Skip to main content
Log in

Hypertonie und renale thrombotische Mikroangiopathie unter anti-angiogener Tumortherapie

Neue nephrologische Entitäten

Hypertension and renal thrombotic microangiopathy under anti-angiogenic tumor therapy

New nephrological entities

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Anti-angiogene Therapiekonzepte (AAT) mit gezielter Störung der VEGF (vascular endothelial growth factor)-Signalgebung (VSP) finden derzeit in der palliativ-onkologischen Behandlung von Tumorpatienten eine breite und stetig zunehmende Anwendung. Während diese nicht kurativen Therapien bestimmte Behandlungsendpunkte von mehreren Krebserkrankungen unter Umständen verbessern können, zeigen die klinischen Daten auch, dass sie für eine Reihe relevanter kardiovaskulärer und renaler Nebenwirkungen mit hohen Inzidenzraten verantwortlich sind. Nach aktuellen Schätzungen liegt beispielsweise die Rate für arterielle Hypertonie bei 19–24 % und könnte mit Anwendung potenterer VSP-Inhibitoren der zweiten Generation sogar noch deutlich höher sein. Das Auftreten von Proteinurie wurde in bis zu 20 % der behandelten Fälle beobachtet. Eine relativ häufig beschriebene Komplikation unter AAT ist zudem die Entwicklung einer renalen thrombotischen Mikroangiopathie (TMA), welche große Ähnlichkeiten mit der Präeklampsie hat, einer Erkrankung, die ebenfalls durch gestörte VSP und endotheliale Dysfunktion charakterisiert ist. Da die Nutzung dieser Medikamente weiter wächst sowie neue Variationen entwickelt werden, ergibt sich eine zunehmende Notwendigkeit für Nephrologen zu lernen, wie Toxizitäten von VSP-Inhibitoren richtig zu diagnostizieren und adäquat zu behandeln sind. Zugleich bietet sich aber auch die Gelegenheit zu versuchen, diese unerwünschten Nebeneffekte und klinischen Phänotypen auf die zugrunde liegenden molekularen Mechanismen zurückzuführen, die sie auslösen. Gemäß dem Konzept von personalisierter Medizin könnte dieses neue Wissen eines Tages genutzt werden, um anti-angiogene Therapieregime von Patienten zu individualisieren und dadurch zu verbessern.

Abstract

Anti-angiogenic therapies (AAT) targeting the VEGF signaling pathway (VSP) are increasingly used by oncologists for palliative treatment of patients with various solid tumors. While these non-curative drugs may improve certain treatment endpoints in selected cancer entities, clinical data suggest that they also cause a number of serious cardiovascular and renal side effects at rather high rates. For instance, the incidence of clinical hypertension has been estimated to be 19-24% and may be even higher with more potent second-generation VSP inhibitors. Onset of proteinuria has been observed in up to 20% of treated cases. Another frequently occurring renal complication under AAT is the development of renal thrombotic microangiopathy (TMA). This pattern of injury is the same as found in patients with pre-eclampsia, also a disease of disordered VEGF signaling and endothelial dysfunction. Because use of these medications continues to grow and many new formulations in development, there is an increasing need for the nephrologist to learn how to diagnose and manage VSP inhibitor toxicities. But at the same time there is a great opportunity to try connect these adverse events and clinical phenotypes back to the molecular mechanisms precipitating them. Consistent with the concept of personalized medicine, we may at some point use this new knowledge to individualize and hence optimize therapies for patients undergoing anti-angiogenic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  2. Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  3. Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13:1–14

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Zhu X, Wu S, Dahut WL et al (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 49:186–193

    Article  PubMed  CAS  Google Scholar 

  5. Wu S, Chen JJ, Kudelka A et al (2008) Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol 9:117–123

    Article  PubMed  CAS  Google Scholar 

  6. Robinson ES, Matulonis UA, Ivy P et al (2010) Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol 5:477–483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Maitland ML, Kasza KE, Karrison T et al (2009) Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res 15:6250–6257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Patel TV, Morgan JA, Demetri GD et al (2008) A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst 100:282–284

    Article  PubMed  CAS  Google Scholar 

  9. Izzedine H, Rixe O, Billemont B et al (2007) Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis 50:203–218

    Article  PubMed  CAS  Google Scholar 

  10. Hood JD, Meininger CJ, Ziche M et al (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274:H1054–1058

    PubMed  CAS  Google Scholar 

  11. Robinson ES, Khankin EV, Choueiri TK et al (2010) Suppression of the nitric oxide pathway in metastatic renal cell carcinoma patients receiving vascular endothelial growth factor-signaling inhibitors. Hypertension 56:1131–1136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Mayer EL, Dallabrida SM, Rupnick MA et al (2011) Contrary effects of the receptor tyrosine kinase inhibitor vandetanib on constitutive and flow-stimulated nitric oxide elaboration in humans. Hypertension 58:85–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Facemire CS, Nixon AB, Griffiths R et al (2009) Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension 54:652–658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kappers MH, de Beer VJ, Zhou Z et al (2012) Sunitinib-induced systemic vasoconstriction in swine is endothelin mediated and does not involve nitric oxide or oxidative stress. Hypertension 59:151–157

    Article  PubMed  CAS  Google Scholar 

  15. Kappers MH, van Esch JH, Sluiter W et al (2010) Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension 56:675–681

    Article  PubMed  CAS  Google Scholar 

  16. de Jesus-Gonzalez N, Robinson E, Penchev R et al (2012) Regorafenib induces rapid and reversible changes in plasma nitric oxide and endothelin-1. Am J Hypertens 25:1118–1123

    Article  PubMed  Google Scholar 

  17. Kappers MH, Smedts FM, Horn T et al (2011) The vascular endothelial growth factor receptor inhibitor sunitinib causes a preeclampsia-like syndrome with activation of the endothelin system. Hypertension 58:295–302

    Article  PubMed  CAS  Google Scholar 

  18. Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Bohm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76:8–18

    Article  PubMed  Google Scholar 

  20. Baffert F, Le T, Sennino B et al (2006) Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 290:H547–H559

    Article  PubMed  CAS  Google Scholar 

  21. Mourad JJ, des Guetz G, Debbabi H et al (2008) Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol 19:927–934

    Article  PubMed  Google Scholar 

  22. Steeghs N, Gelderblom H, Roodt JO et al (2008) Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res 14:3470–3476

    Article  PubMed  CAS  Google Scholar 

  23. Greene AS, Tonellato PJ, Lui J et al (1989) Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol 256:H126–H131

    PubMed  CAS  Google Scholar 

  24. Machnik A, Neuhofer W, Jantsch J et al (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15:545–552

    Article  PubMed  CAS  Google Scholar 

  25. Robinson ES, Khankin EV, Karumanchi SA et al (2010) Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol 30:591–601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Glusker P, Recht L, Lane B (2006) Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med 354:980–982 (discussion 980–982)

    Article  PubMed  CAS  Google Scholar 

  27. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  28. Maitland ML, Bakris GL, Black HR et al (2010) Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 102:596–604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Pickering TG, Hall JE, Appel LJ et al (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 111:697–716

    Article  PubMed  Google Scholar 

  30. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  31. Azizi M, Chedid A, Oudard S (2008) Home blood-pressure monitoring in patients receiving sunitinib. N Engl J Med 358:95–97

    Article  PubMed  CAS  Google Scholar 

  32. de Jesus-Gonzalez N, Robinson E, Moslehi J et al (2012) Management of antiangiogenic therapy-induced hypertension. Hypertension 60:607–615

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abernethy DR, Schwartz JB (1999) Calcium-antagonist drugs. N Engl J Med 341:1447–1457

    Article  PubMed  CAS  Google Scholar 

  34. Pande A, Lombardo J, Spangenthal E et al (2007) Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res 27:3465–3470

    PubMed  CAS  Google Scholar 

  35. Mir O, Coriat R, Ropert S et al (2012) Treatment of bevacizumab-induced hypertension by amlodipine. Invest New Drugs 30:702–707

    Article  PubMed  CAS  Google Scholar 

  36. Izzedine H, Ederhy S, Goldwasser F et al (2009) Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol 20:807–815

    Article  PubMed  CAS  Google Scholar 

  37. Curwen JO, Musgrove HL, Kendrew J et al (2008) Inhibition of vascular endothelial growth factor – a signaling induces hypertension: examining the effect of cediranib (recentin; AZD2171) treatment on blood pressure in rat and the use of concomitant antihypertensive therapy. Clin Cancer Res 14:3124–3131

    Article  PubMed  CAS  Google Scholar 

  38. Tlemsani C, Mir O, Boudou-Rouquette P et al (2011) Posterior reversible encephalopathy syndrome induced by anti-VEGF agents. Target Oncol 6:253–258

    Article  PubMed  Google Scholar 

  39. Seet RC, Rabinstein AA (2012) Clinical features and outcomes of posterior reversible encephalopathy syndrome following bevacizumab treatment. QJM 105:69–75

    Article  PubMed  CAS  Google Scholar 

  40. Mir O, Mouthon L, Alexandre J et al (2007) Bevacizumab-induced cardiovascular events: a consequence of cholesterol emboli syndrome? J Natl Cancer Inst 99:85–86

    Article  PubMed  Google Scholar 

  41. Humphreys BD, Atkins MB (2009) Rapid development of hypertension by sorafenib: toxicity or target? Clin Cancer Res 15:5947–5949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Scartozzi M, Galizia E, Chiorrini S et al (2009) Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol 20:227–230

    Article  PubMed  CAS  Google Scholar 

  43. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  44. Rixe O, Billemont B, Izzedine H (2007) Hypertension as a predictive factor of Sunitinib activity. Ann Oncol 18:1117

    Article  PubMed  CAS  Google Scholar 

  45. Bono P, Elfving H, Utriainen T et al (2009) Hypertension and clinical benefit of bevacizumab in the treatment of advanced renal cell carcinoma. Ann Oncol 20:393–394

    Article  PubMed  CAS  Google Scholar 

  46. Rini BI, Schiller JH, Fruehauf JP et al (2011) Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res 17:3841–3849

    Article  PubMed  CAS  Google Scholar 

  47. Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26:4672–4678

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Kim JJ, Vaziri SA, Rini BI et al (2012) Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer 118:1946–1954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Rini BI, Melichar B, Ueda T et al (2013) Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol 14:1233–1242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Bollee G, Patey N, Cazajous G et al (2009) Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant 24:682–685

    Article  PubMed  CAS  Google Scholar 

  51. Eremina V, Jefferson JA, Kowalewska J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Humphreys BD, Sharman JP, Henderson JM et al (2004) Gemcitabine-associated thrombotic microangiopathy. Cancer 100:2664–2670

    Article  PubMed  Google Scholar 

  53. Wu S, Kim C, Baer L et al (2010) Bevacizumab increases risk for severe proteinuria in cancer patients. J Am Soc Nephrol 21:1381–1389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683

    Article  PubMed  CAS  Google Scholar 

  55. Eremina V, Quaggin SE (2010) Biology of anti-angiogenic therapy-induced thrombotic microangiopathy. Semin Nephrol 30:582–590

    Article  PubMed  CAS  Google Scholar 

  56. Izzedine H, Brocheriou I, Deray G et al (2007) Thrombotic microangiopathy and anti-VEGF agents. Nephrol Dial Transplant 22:1481–1482

    Article  PubMed  Google Scholar 

  57. Roncone D, Satoskar A, Nadasdy T et al (2007) Proteinuria in a patient receiving anti-VEGF therapy for metastatic renal cell carcinoma. Nat Clin Pract Nephrol 3:287–293

    Article  PubMed  Google Scholar 

  58. Frangie C, Lefaucheur C, Medioni J et al (2007) Renal thrombotic microangiopathy caused by anti-VEGF-antibody treatment for metastatic renal-cell carcinoma. Lancet Oncol 8:177–178

    Article  PubMed  Google Scholar 

  59. George BA, Zhou XJ, Toto R (2007) Nephrotic syndrome after bevacizumab: case report and literature review. Am J Kidney Dis 49:e23–e29

    Article  PubMed  Google Scholar 

  60. Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191

    Article  PubMed  CAS  Google Scholar 

  61. Khurana A (2007) Allergic interstitial nephritis possibly related to sunitinib use. Am J Geriatr Pharmacother 5:341–344

    Article  PubMed  CAS  Google Scholar 

  62. Winn SK, Ellis S, Savage P et al (2009) Biopsy-proven acute interstitial nephritis associated with the tyrosine kinase inhibitor sunitinib: a class effect? Nephrol Dial Transplant 24:673–675

    Article  PubMed  CAS  Google Scholar 

  63. Jhaveri KD, Flombaum CD, Kroog G et al (2011) Nephrotoxicities associated with the use of tyrosine kinase inhibitors: a single-center experience and review of the literature. Nephron Clin Pract 117:c312–c319

    Article  PubMed  CAS  Google Scholar 

  64. Gurevich F, Perazella MA (2009) Renal effects of anti-angiogenesis therapy: update for the internist. Am J Med 122:322–328

    Article  PubMed  CAS  Google Scholar 

  65. Obhrai JS, Patel TV, Humphreys BD (2008) The case/progressive hypertension and proteinuria on anti-angiogenic therapy. Kidney Int 74:685–686

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Grgic.

Ethics declarations

Interessenkonflikt

I. Grgic, A. Burchert und B. D. Humphreys geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Zeier, Heidelberg

J. Hoyer, Marburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grgic, I., Burchert, A. & Humphreys, B.D. Hypertonie und renale thrombotische Mikroangiopathie unter anti-angiogener Tumortherapie. Nephrologe 11, 20–27 (2016). https://doi.org/10.1007/s11560-015-0038-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-015-0038-x

Schlüsselwörter

Keywords

Navigation