Skip to main content
Log in

High-Cut-off-Filter

Grundlagen und Indikationsgebiete

High cut-off filters

Technical background and clinical use

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Mit der Entwicklung von High-Cut-off (HCO)-Membranen steht eine neue Klasse von Dialysefiltern zur Verfügung. Mit molekularem Cut-off in der Nähe des physiologischen Wertes der Eigennieren (65 kD) ermöglichen diese Filter die effektive Elimination größerer Mittelmoleküle und kleinerer proteingebundener Soluta. Klinisch finden HCO-Filter unter anderem Einsatz zur Elimination von Zytokinen bei SIRS/Sepsis sowie zur Therapie der akuten Nierenschädigung bei multiplem Myelom und Cast-Nephropathie oder bei schwerer Rhabdomyolyse. Dieser Beitrag fasst die technischen Grundlagen und den gegenwärtigen Stand der klinischen Evidenz zum Einsatz von HCO-Filtern zusammen und diskutiert deren Wertigkeit im Rahmen innovativer Therapiekonzepte.

Abstract

With the recent development of high cut-off (HCO) membranes, a new class of dialysis filters has become available. With molecular cut-offs closer to those of native kidneys (65 kD) these filters provide effective clearance for larger middle-sized molecules and small protein-bound solutes. The HCO filters have been used across different clinical settings including sepsis syndrome and the treatment of renal involvement in multiple myeloma and cast nephropathy and in severe rhabdomyolysis. This review summarizes the technical background and current clinical evidence for the use of HCO filters and discusses the future potential in novel therapeutic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Zweigart C, Neubauer M, Storr M et al (2010) Progress in the development of membranes for kidney-replacement therapy. In: Drioli E, Giorno L (Eds) Comprehensive membrane science and engineering, Bd 2. Academic Press, Oxford, pp 351–390

  2. Hutchison CA, Harding S, Mead G et al (2008) Serum free-light chain removal by high cut-off hemodialysis: optimizing removal and supportive care. Artif Organs 32:910–917

    Article  PubMed  Google Scholar 

  3. Morgera S, Kraft AK, Siebert G et al (2002) Long-term outcomes in acute renal failure patients treated with continuous renal replacement therapies. Am J Kidney Dis 40:275–279

    Article  PubMed  Google Scholar 

  4. Uchino S, Bellomo R, Goldsmith D et al (2002) Super high flux hemofiltration: a new technique for cytokine removal. Intensive Care Med 28:651–655

    Article  PubMed  CAS  Google Scholar 

  5. Morgera S, Haase M, Rocktäschel J et al (2003) High permeability haemofiltration improves peripheral blood mononuclear cell proliferation in septic patients with acute renal failure. Nephrol Dial Transplant 18:2570–2576

    Article  PubMed  Google Scholar 

  6. Haase M, Bellomo R, Baldwin I et al (2007) Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial. Am J Kidney Dis 50:296–304

    Article  PubMed  CAS  Google Scholar 

  7. Morgera S, Haase M, Kuss T et al (2006) Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med 34:2099–2104

    Article  PubMed  CAS  Google Scholar 

  8. Alexanian R, Barlogie B, Dixon D (1990) Renal failure in multiple myeloma. Pathogenesis and prognostic implications. Arch Intern Med 150:1693–1695

    Article  PubMed  CAS  Google Scholar 

  9. Bladé J, Fernandez-Llama P, Bosch F et al (1998) Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch Intern Med 158:1889–1893

    Article  PubMed  Google Scholar 

  10. Kyle RA, Gertz MA, Witzig TE et al (2003) Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78:21–33

    Article  PubMed  Google Scholar 

  11. Eleutherakis-Papaiakovou V, Bamias A, Gika D et al (2007) Renal failure in multiple myeloma: incidence, correlations, and prognostic significance. Leuk Lymphoma 48:337–341

    Article  PubMed  CAS  Google Scholar 

  12. Knudsen LM, Hjorth M, Hippe E (2000) Renal failure in multiple myeloma: reversibility and impact on the prognosis. Nordic Myeloma Study Group. Eur J Haematol 65:175–181

    Article  PubMed  CAS  Google Scholar 

  13. Torra R, Blade J, Cases A et al (1995) Patients with multiple myeloma requiring long-term dialysis: presenting features, response to therapy, and outcome in a series of 20 cases. Br J Haematol 91:854–859

    Article  PubMed  CAS  Google Scholar 

  14. Hutchison CA, Batuman V, Behrens J et al (2012) The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat Rev Nephrol 8:43–51

    Article  CAS  Google Scholar 

  15. Tsakiris DJ, Stel VS, Finne P et al (2010) Incidence and outcome of patients starting renal replacement therapy for end-stage renal disease due to multiple myeloma or light-chain deposit disease: an ERA-EDTA Registry study. Nephrol Dial Transplant 25:1200–1206

    Article  PubMed  Google Scholar 

  16. Richardson PG, Barlogie B, Berenson J et al (2005) Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood 106:2977–2981

    Article  PubMed  CAS  Google Scholar 

  17. Rajkumar SV, Jacobus S, Callander NS et al (2010) Lenalidomide plus high-dose dexamathasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 11:29–37

    Article  PubMed  CAS  Google Scholar 

  18. Clark WF, Stewart AK, Rock GA et al (2005) Plasma exchange when myeloma presents as acute renal failure: a randomized controlled trial. Ann Intern Med 143:777–784

    Article  PubMed  Google Scholar 

  19. Burnette BL, Leung N, Rajkumar SV (2011) Renal improvement in myeloma with bortezomib plus plasma exchange. N Engl J Med 364:2365–2366

    Article  PubMed  CAS  Google Scholar 

  20. Hutchison CA, Cockwell P, Reid S et al (2007) Efficient removal of immunoglobulin free light chains by hemodialysis for multiple myeloma: in vitro and in vivo studies. J Am Soc Nephrol 18:886–895

    Article  PubMed  CAS  Google Scholar 

  21. Hutchison CA, Bradwell AR, Cook M et al (2009) Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin J Am Soc Nephrol 4:745–754

    Article  PubMed  CAS  Google Scholar 

  22. Heyne N, Denecke B, Guthoff M et al (2012) Extracorporeal light chain elimination: high cut-off (HCO) hemodialysis parallel to chemotherapy allows for a high proportion of renal recovery in multiple myeloma patients with dialysis dependent acute kidney injury. Ann Hematol 91:729–735

    Article  PubMed  CAS  Google Scholar 

  23. Wynckel A, Vuiblet V, Schneider N et al (2010) Comparison of plasma exchange and hemodialysis using a high cut-off membrane (HCO) for removal of immunoglobulin free light chains in multiple myeloma. J Am Soc Nephrol 21:F-FC173 (Abstract)

    Google Scholar 

  24. Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361:62–67

    Article  PubMed  CAS  Google Scholar 

  25. Holt SG, Moore KP (2001) Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med 27:803–811

    Article  PubMed  CAS  Google Scholar 

  26. Ward MM (1998) Factors predictive of acute renal failure in rhabdomyolysis. Arch Intern Med 148:1553–1557

    Article  Google Scholar 

  27. Woodrow G, Brownjohn AM, Turney JH (1995) The clinical and biochemical features of acute renal failure due to rhabdomyolysis. Ren Fail 17:467–474

    Article  PubMed  CAS  Google Scholar 

  28. Ronco C (2005) Extracorporeal therapies in acute rhabdomyolysis and myoglobin clearance. Crit Care 9:141–142

    Article  PubMed  Google Scholar 

  29. Vanholder R, Sever MS, Erek E, Lameire N (2000) Rhabdomyolysis. J Am Soc Nephrol 11:1553–1561

    PubMed  CAS  Google Scholar 

  30. Heyne N, Guthoff M, Weisel KC (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361:1412

    PubMed  CAS  Google Scholar 

  31. Heyne N, Guthoff M, Krieger J et al (2012) High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract 121:c159–c164

    Article  PubMed  CAS  Google Scholar 

  32. Hutchison CA, Meryon I, Drayson M (2008) High cut-off hemodialysis lowers inflammatory status in chronic dialysis patients. J Am Soc Nephrol 19:TH-PO707 (Abstract)

    Google Scholar 

  33. Zickler D, Epple C, Lun A et al (2009) Randomized controlled trial with high cut-off membranes in chronic hemodialysis patients: humoral and cellular markers of inflammation. J Am Soc Nephrol 20:SA FC386 (Abstract)

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. N. Heyne und M. Guthoff geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Heyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyne, N., Guthoff, M. High-Cut-off-Filter. Nephrologe 8, 406–413 (2013). https://doi.org/10.1007/s11560-012-0734-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-012-0734-8

Schlüsselwörter

Keywords

Navigation