Skip to main content
Log in

Aktuelle Therapiestudien für die Indikation zystischer Nierenerkrankungen

Current therapy studies on the indications for cystic kidney diseases

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Familiäre zystische Nierenerkrankungen bilden eine heterogene Gruppe von seltenen Erkrankungen. Basierend auf molekularbiologischen Erkenntnissen wurden bereits zugelassene Medikamente kürzlich neu für die Indikationen autosomal-dominante polyzystische Nierenerkrankung (ADPKD) und tuberöse Sklerose geprüft. Da bei der ADPKD die Nierenfunktion über Jahrzehnte stabil ist, wird die Therapieeffizienz mittels Nierengröße als Surrogatmarker der Krankheitslast bestimmt. Tolvaptan, ein Aquaretikum, verminderte in einer 3-jährigen Studie mit 1445 ADPKD-Patienten das Größenwachstum der Nieren, den Nierenfunktionsverlust und die Nierenschmerzen. Die langwirksamen Somatostatine Octreotid und Lanreotid verminderten moderat die Leber- und die Nierengröße von Patienten mit ADPKD und polyzystischer Lebererkrankung. Die mTOR-Inhibitoren Sirolimus und Everolimus waren für die Indikation ADPKD nutzlos, während sie mit tuberöser Sklerose assoziierte renale Angiomyolipome schrumpfen ließen. Die Gesundheitsbehörden werden noch 2013 über die Zulassung von Tolvaptan für die Indikation ADPKD und über Everolimus für die Indikation tuberöse Sklerose entscheiden.

Abstract

Inherited cystic kidney diseases are a heterogeneous group of rare diseases. Based on molecular biological findings approved drugs have already been recently tested for the new indications for autosomal dominant polycystic kidney disease (ADPKD) and tuberous sclerosis complex. For ADPKD it is important to note that renal function remains stable for decades so the effectiveness of treatment is determined by renal size as a surrogate marker of disease burden. In a 3-year study of 1,445 ADPKD patients tolvaptan, an aquaretic agent, decreased the growth of kidneys, renal function loss and kidney pain. The long-acting somatostatins octreotide and lanreotide moderately decreased liver and kidney size in patients with ADPKD and polycystic liver disease. The mTOR inhibitors sirolimus and everolimus were ineffective for the indications of ADPKD while these drugs shrunk the renal angiomyolipomas associated with tuberous sclerosis. Health authorities will decide this year on the approval of tolvaptan for ADPKD and of everolimus for the indications for tuberous sclerosis complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Augustine JJ, Bodziak KA, Hricik DE (2007) Use of sirolimus in solid organ transplantation. Drugs 67:369–391

    Article  PubMed  CAS  Google Scholar 

  2. Belibi FA, Wallace DP, Yamaguchi T et al (2002) The effect of caffeine on renal epithelial cells from patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 13:2723–2729

    Article  PubMed  CAS  Google Scholar 

  3. Bissler JJ, Kingswood JC, Radzikowska E et al (2013) Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381:817–824

    Article  PubMed  CAS  Google Scholar 

  4. Bissler JJ, Mccormack FX, Young LR et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151

    Article  PubMed  CAS  Google Scholar 

  5. Braun M, Young J, Reiner CS et al (2012) Ovarian toxicity from sirolimus. N Engl J Med 366:1062–1064

    Article  PubMed  CAS  Google Scholar 

  6. Caroli A, Antiga L, Cafaro M et al (2010) Reducing polycystic liver volume in ADPKD: effects of somatostatin analogue octreotide. Clin J Am Soc Nephrol 5:783–789

    Article  PubMed  CAS  Google Scholar 

  7. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  PubMed  CAS  Google Scholar 

  8. Dabora SL, Jozwiak S, Franz DN et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80

    Article  PubMed  CAS  Google Scholar 

  9. Davies DM, Johnson SR, Tattersfield AE et al (2008) Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med 358:200–203

    Article  PubMed  CAS  Google Scholar 

  10. Devuyst O, Wang X, Serra A (2011) Vasopressin-2 receptor antagonists in autosomal dominant polycystic kidney disease: from man to mouse and back. Nephrol Dial Transplant 26:2423–2425

    Article  PubMed  CAS  Google Scholar 

  11. Grantham J, Torres V, Chapman A et al (2006) Volume progression in polycystic kidney disease. N Engl J Med 354:2122–2130

    Article  PubMed  CAS  Google Scholar 

  12. Grantham JJ, Cook LT, Wetzel LH et al (2010) Evidence of extraordinary growth in the progressive enlargement of renal cysts. Clin J Am Soc Nephrol 5:889–896

    Article  PubMed  Google Scholar 

  13. Helal I, Reed B, McFann K et al (2011) Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 6:2439–2443

    Article  PubMed  Google Scholar 

  14. Ho TA, Godefroid N, Gruzon D et al (2012) Autosomal dominant polycystic kidney disease is associated with central and nephrogenic defects in osmoregulation. Kidney Int 82:1121–1129

    Article  PubMed  CAS  Google Scholar 

  15. Hogan MC, Masyuk TV, Page LJ et al (2010) Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol 21:1052–1061

    Article  PubMed  CAS  Google Scholar 

  16. Kistler AD, Poster D, Krauer F et al (2009) Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int 75:235–241

    Article  PubMed  Google Scholar 

  17. Kistler AD, Serra AL, Siwy J et al (2013) Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS One 8:e53016

    Article  PubMed  CAS  Google Scholar 

  18. Liebau MC, Serra AL (2012) Looking at the (w)hole: magnet resonance imaging in polycystic kidney disease. Pediatr Nephrol [Epub ahead of print]

  19. Masyuk TV, Masyuk AI, Torres VE et al (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3’,5’-cyclic monophosphate. Gastroenterology 132:1104–1116

    Article  PubMed  CAS  Google Scholar 

  20. Piontek K, Menezes LF, Garcia-Gonzalez MA et al (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13:1490–1495

    Article  PubMed  CAS  Google Scholar 

  21. Ruggenenti P, Remuzzi A, Ondei P et al (2005) Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int 68:206–216

    Article  PubMed  CAS  Google Scholar 

  22. Sampson JR, Maheshwar MM, Aspinwall R et al (1997) Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet 61:843–851

    Article  PubMed  CAS  Google Scholar 

  23. Serra AL, Poster D, Kistler AD et al (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829

    Article  PubMed  CAS  Google Scholar 

  24. Torres VE, Chapman AB, Devuyst O et al (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367:2407–2418

    Article  PubMed  CAS  Google Scholar 

  25. Torres VE, Harris PC (2006) Mechanisms of disease: autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol 2:40–55

    Article  PubMed  CAS  Google Scholar 

  26. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301

    Article  PubMed  Google Scholar 

  27. Torres VE, Wang X, Qian Q et al (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10:363–364

    Article  PubMed  CAS  Google Scholar 

  28. Van Keimpema L, Nevens F, Vanslembrouck R et al (2009) Lanreotide reduces the volume of polycystic liver: a randomized, double-blind, placebo-controlled trial. Gastroenterology 137:1661–1668.e1–e2

    Article  Google Scholar 

  29. Walz G, Budde K, Mannaa M et al (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  PubMed  CAS  Google Scholar 

  30. Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350:151–164

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Interessenkonflikt. A.L. Serra ist als Berater für die Firma Otsuka und Novartis tätig. K. Petzold gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Petzold Dipl.-Ing., MAS Nutrition and Health ETH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, A., Petzold, K. Aktuelle Therapiestudien für die Indikation zystischer Nierenerkrankungen. Nephrologe 8, 396–405 (2013). https://doi.org/10.1007/s11560-012-0733-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-012-0733-9

Schlüsselwörter

Keywords

Navigation