Skip to main content
Log in

Genetisches Screening bei proteinurischen Nierenerkrankungen

Genetic screening in proteinuric renal diseases

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Hereditäre Formen von proteinurischen Nierenerkrankungen gewinnen zunehmend an Bedeutung im Hinblick auf Prognose und therapeutische Ansätze. Die Identifikation zahlreicher, meist im Podozyten angesiedelter Gene und Genprodukte, die für die Integrität und Funktionalität des glomerulären Filters von entscheidender Bedeutung sind, führte zur Bezeichnung der Podozytopathien. Aufgrund der genetisch determinierten, auf die Niere begrenzten Schädigung zeigen hereditäre Podozytopathien im Allgemeinen kein Ansprechen auf eine intensivierte immunsuppressive Therapie mit einem daraus resultierenden rascheren und häufigeren Fortschreiten hin zum terminalen Nierenversagen im Vergleich zu nichtgenetischen Formen. Nach einer Nierentransplantation allerdings wird bei nichtgenetischer FSGS eine signifikant höhere Rekurrenzrate (50%) mit nachfolgendem Transplantatverlust beobachtet. Klinisch relevante Entscheidungen z. B. hinsichtlich Therapiemöglichkeiten, Lebendspendenoptionen etc. machen das genetische Screening bei ausgewählten Erkrankungen unerlässlich.

Abstract

Hereditary forms of renal diseases with proteinuria or steroid-resistant nephrotic syndrome as the leading symptom are an evolving entity. The identification of numerous genes and gene products, mostly located in the podocyte, that are highly important for the integrity and functionality of the glomerular filtration barrier coined the term podocytopathy. Due to the genetic aspect and the exclusively renal localization hereditary podocytopathies in general show no response to an intensified immunosuppressive treatment with only few exceptions and as a consequence progress more frequently and faster to end-stage renal disease compared to non-genetic forms. After renal transplantation, however, non-genetic focal segmental glomerulosclerosis (FSGS) is associated with a 50 % risk of disease recurrence, which leads to a significantly higher graft loss. Decision-making regarding, for example the therapeutic options and the consulting for living-donor transplantation are dependent on the genetic background in certain diseases, which makes a genetic screening essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. (o A) (1997) Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia) Lancet 349:1857–1863

  2. Ritz E, Schmieder R, Pollock C (2010) Renal protection in diabetes: lessons from ONTARGET. Cardiovasc Diabetol 9:60

    Article  PubMed  Google Scholar 

  3. Sandholm N, Salem RM, McKnight AJ et al (2012) New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 8(9):e1002921

    Article  PubMed  CAS  Google Scholar 

  4. Yoshida H, Kuriyama S, Atsumi Y et al (1996) Angiotensin I converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus. Kidney Int 50(2):657

    Article  PubMed  CAS  Google Scholar 

  5. Kuramoto N, Iizuka T, Ito H et al (1999) Effect of ACE gene on diabetic nephropathy in NIDDM patients with insulin resistance. Am J Kidney Dis 33(2):276

    Article  PubMed  CAS  Google Scholar 

  6. Beck LH Jr, Bonegio RG, Lambeau G et al (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361:11–21

    Article  PubMed  CAS  Google Scholar 

  7. Glassock RJ (2009) Human idiopathic membranous nephropathy – a mystery solved? N Engl J Med 361:81–83

    Article  PubMed  CAS  Google Scholar 

  8. Stanescu HC, Arcos-Burgos M, Medlar A et al (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 364:616–626

    Article  PubMed  CAS  Google Scholar 

  9. Zenker M, Machuca E, Antignac C (2009) Genetics of nephrotic syndrome: new insights into molecules acting at the glomerular filtration barrier. J Mol Med (Berl) 87(9):849–857

    Google Scholar 

  10. Hildebrandt F (2010) Genetic kidney diseases. Lancet 375:1287–1295

    Article  PubMed  CAS  Google Scholar 

  11. (o A) (2008) North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS), Annual Report on chronic kidney disease

  12. Mak SK, Short CD, Mallick NP (1996) Long-term outcome of adult-onset minimal-change nephropathy. Nephrol Dial Transplant 11:2192–2201

    Article  PubMed  CAS  Google Scholar 

  13. Waldman M, Crew RJ, Valeri A et al (2007) Adult minimal-change disease: clinical characteristics, treatment, and outcomes. Clin J Am Soc Nephrol 2:445–453

    Article  PubMed  CAS  Google Scholar 

  14. Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    PubMed  Google Scholar 

  15. Ballermann BJ (2005) Glomerular endothelial cell differentiation. Kidney Int 67:1668–1671

    Article  PubMed  Google Scholar 

  16. Gbadegesin R, Lavin P, Foreman J et al (2011) Pathogenesis and therapy of focal segmental glomerulosclerosis: an update. Pediatr Nephrol 26:1001–1015

    Article  PubMed  Google Scholar 

  17. Büscher AK, Kranz B, Büscher R et al (2010) Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 5(11):2075–2084

    Article  PubMed  Google Scholar 

  18. Yan K, Kudo A, Hirano H et al (1999) Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus. Kidney Int 56:65–73

    Article  PubMed  CAS  Google Scholar 

  19. Faul C, Donnelly M, Merscher-Gomez S et al (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938

    Article  PubMed  CAS  Google Scholar 

  20. Schönenberger E, Ehrich JH, Haller H et al (2011) The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant 26(1):18–24

    Article  PubMed  Google Scholar 

  21. Niaudet P (1994) Treatment of childhood steroid-resistant idiopathic nephrosis with a combination of cyclosporine and prednisone. French Society of Pediatric Nephrology. J Pediatr 125(6 Pt 1):981–986

    Article  PubMed  CAS  Google Scholar 

  22. Malina M, Cinek O, Janda J et al (2009) Partial remission with cyclosporine A in a patient with nephrotic syndrome due to NPHS2 mutation. Pediatr Nephrol 24(10):2051–2053

    Article  PubMed  Google Scholar 

  23. Gellermann J, Stefanidis CJ, Mitsioni A, Querfeld U (2010) Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol 25(7):1285–1289

    Article  PubMed  Google Scholar 

  24. Weber S, Tönshoff B (2005) Recurrence of focal-segmental glomerulosclerosis in children after renal transplantation: clinical and genetic aspects. Transplantation 80(1 Suppl):128–134

    Article  Google Scholar 

  25. Jungraithmayr TC, Hofer K, Cochat P (2011) Screening for NPHS2 mutations may help predict FSGS recurrence after transplantation. J Am Soc Nephrol 22(3):579–585

    Article  PubMed  Google Scholar 

  26. Bertelli R, Ginevri F, Caridi G et al (2003) Recurrence of focal segmental glomerulosclerosis after renal transplantation in patients with mutations of podocin. Am J Kidney Dis 41:1314–1321

    Article  PubMed  CAS  Google Scholar 

  27. Kidney Disease: Improving Global Outcomes (KDIGO) (2012) KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl 2(2):i–viii,139–274

    Google Scholar 

  28. Hinkes BG, Mucha B, Vlangos CN et al (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1 and LAMB2). Pediatrics 119: e907–e919

    Article  PubMed  Google Scholar 

  29. Santín S, Bullich G, Tazón-Vega B et al (2011) Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 6(5):1139

    Article  PubMed  Google Scholar 

  30. Machuca E, Hummel A, Nevo F et al (2009) Clinical and epidemiological assessment of steroid-resistant nephrotic syndrome associated with the NPHS2 R229Q variant. Kidney Int 75(7):727–735

    Article  PubMed  CAS  Google Scholar 

  31. Gbadegesin RA, Lavin PJ, Hall G et al (2012) Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int 81(1):94–99

    Article  PubMed  CAS  Google Scholar 

  32. Heeringa SF, Möller CC, Du J et al (2009) A novel TRPC6 mutation that causes childhood FSGS. PLoS One 4(11):e7771

    Article  PubMed  Google Scholar 

  33. Gigante M, Caridi G, Montemurno E et al (2011) TRPC6 mutations in children with steroid-resistant nephrotic syndrome and atypical phenotype. Clin J Am Soc Nephrol 6(7):1626–1634

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jungraithmayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungraithmayr, T. Genetisches Screening bei proteinurischen Nierenerkrankungen. Nephrologe 8, 136–143 (2013). https://doi.org/10.1007/s11560-012-0691-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-012-0691-2

Schlüsselwörter

Keywords

Navigation