Skip to main content
Log in

Chronische metabolische Azidose bei Niereninsuffizienz

Chronic metabolic acidosis in renal failure

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Eine chronische metabolische Azidose ist eine häufige Komplikation bei niereninsuffizienten Patienten, die klinisch im Stadium IV oder V der chronischen Niereninsuffizienz („chronic kidney disease“, CKD) auffällt, jedoch bereits bei Patienten ab einem CKD 2 feststellbar ist. Die multiplen systemischen Auswirkungen einer metabolischen Azidose manifestieren sich in Störungen des Protein-, Muskel- und Knochenstoffwechsels. Zudem kann sie zur Beeinträchtigung der kardialen Funktion und der respiratorischen Belastbarkeit führen. Eine chronische metabolische Azidose ist mit einer erhöhten Mortalität der betroffenen Patienten assoziiert. Die Progression einer Nierenerkrankung ist bei Patienten mit chronischer metabolischer Azidose beschleunigt. In Therapiestudien konnte der progressionsmindernde Effekt einer Azidosekorrektur mittels Bikarbonatsubstitution nachgewiesen werden. Zur Korrektur einer Azidose sollten Anpassungen der Ernährungsweise mit einer Bikarbonatsubstitution kombiniert werden. Die Ernährung sollte auf einen erhöhten Anteil an Obst und Gemüse und eine moderate Eiweißzufuhr umgestellt werden. Die Bikarbonatsubstitution kann oral in Tablettenform erfolgen, jedoch müssen die damit verbundene Natriumzufuhr und die konsekutive Volumenbelastung beachtet werden, welche eine vorbestehende Hypertonie oder Herzinsuffizienz aggravieren können. Bei Dialysepatienten erfolgt der wesentliche Teil der Bikarbonatzufuhr über das Dialysat. Während dadurch die Azidose bei der Mehrzahl der Peritonealdialyspatienten ausgeglichen wird, bedürfen Hämodialysepatienten häufig einer zusätzlichen oralen Bikarbonatsubstitution.

Abstract

Chronic metabolic acidosis is a common complication in patients with renal failure. Clinically it is usually recognized by severe renal failure; however, lowered pH and bicarbonate concentrations are already detectable in patients with moderate chronic kidney disease (CKD). Many systemic functions are negatively affected by metabolic acidosis, such as protein catabolism, impairment of muscle and bone metabolism, impairment of cardiac function and lower respiratory performance. Chronic metabolic acidosis is associated with an increased mortality and progression of the underlying renal disease is enhanced. Studies in patients with moderate or severe CKD demonstrate that bicarbonate substitution slows the progression of CKD. For correction of acidosis patient diet should be enriched in fruit and vegetables and contain only moderate amounts of protein. Furthermore, oral bicarbonate substitution is often needed to control acidosis; however, this treatment is associated with a significant ingestion of sodium und consecutive volume overload which may aggravate hypertension and congestive heart failure. In patients on peritoneal dialysis acidosis is generally effectively corrected via a bicarbonate containing dialysate. In contrast patients on hemodialysis often need additional oral bicarbonate substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abramowitz MK, Hostetter TH, Melamed ML (2011) Association of serum bicarbonate levels with gait speed and quadriceps strength in older adults. Am J Kidney Dis 58:29–38

    Article  PubMed  CAS  Google Scholar 

  2. Bacchetta J, Harambat J, Cochat P et al (2012) The consequences of chronic kidney diseas on bone metabolism and grow in children. Nephrol Dial Transplant 27:3063–3071

    Article  PubMed  CAS  Google Scholar 

  3. Ballmer PE, McNurlan MA, Hulter HN et al (1995) Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest 95:39–45

    Article  PubMed  CAS  Google Scholar 

  4. Bommer J, Locatelli F, Satayathum S et al (2004) Association of predialysis serum bicarbonate levels with risk of mortality and hospitalization in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 44:661–671

    PubMed  Google Scholar 

  5. Bowling CB, Inker LA, Gutiérrez OM et al (2011) Age-specific associations of reduced estimated glomerular filtration rate with concurrent chronic kidney disease complications. Clin J Am Nephrol 6:2822–2828

    Article  CAS  Google Scholar 

  6. Brady JP, Hasbargen JA (1998) Correction of metabolic acidosis and its effect on albumin in chronic hemodialysis patients. Am J Kidney Dis 31:35–40

    Article  PubMed  CAS  Google Scholar 

  7. Brüngger M, Hulter HN, Krapf R (1967) Effect of chronic metabolic acidosis on the growth hormone/IGF-1 endocrine axis: new cause of growth hormone insensitivity in humans. Kidney Int 51:216–221

    Article  Google Scholar 

  8. Brunori G et al (2012) Treatment of chronic kidney disease in the elderly: diet or conservative management. J Nephrol 25 (Suppl 19):28–31

    Article  PubMed  Google Scholar 

  9. Caravaca F, Aprobas M, Pizarro JL, Esparrago JF (1999) Metabolic acidosis in advanced renal failure: differences between diabetic and nondiabetic patients. Am J Kidney Dis 33:892–898

    Article  PubMed  CAS  Google Scholar 

  10. Chiu YW, Mehrotra R (2010) What should define optimal correction of metabolic acidosis in chronic kidney disease? Semin Dialysis 23:411–414

    Article  Google Scholar 

  11. Chiu YW, Kopple JD, Mehrotra R (2009) Correction of metabolic acidosis to meliorate wasting in chronic kidney disease: goals and strategies. Semin Nephrol 29:67–74

    Article  PubMed  CAS  Google Scholar 

  12. Drawz PE, Babineau DC, Rahman M (2012) Metabolic complications in elderly adults with chronic kidney disease. J Am Geriatr Soc 60:310–315

    Article  PubMed  Google Scholar 

  13. Eustace JA, Astor B, Muntner PM et al (2004) Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease. Kidney Int 65:1031–1040

    Article  PubMed  CAS  Google Scholar 

  14. Gesser H, Poupa O (1983) Acidosis and cardiac muscle contractility: comparative aspects 1983. Comp Biochem Physiol A Comp Physiol 76:559–566

    Article  PubMed  CAS  Google Scholar 

  15. Goraya N, Wesson DE (2012) Acid-base status and progression of chronic kidney disease. Curr Opin Nephrol Hypertens 21:552–556

    Article  PubMed  CAS  Google Scholar 

  16. Goraya N, Simoni J, Jo C, Wesson DE (2012) Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int 81:86–93

    Article  PubMed  CAS  Google Scholar 

  17. Graham KA, Reaich D, Channon SM et al (1997) Correction of acidosis in hemodialysis decreases whole-body protein degradation. J Am Soc Nephrol 8:632–637

    PubMed  CAS  Google Scholar 

  18. Graham KA, Hoenich NA, Tarbit M et al (1997) Correction of acidosis in hemodialysis patients increases the sensitivity of the parathyroid glands to calcium. J Am Soc Nephrol 8:627–631

    PubMed  CAS  Google Scholar 

  19. Garibotti G, Sofia A, Bonanni A et al (2012) Effects of peritoneal dialysis on protein metabolism. Nutr Metab Cardiovasc Dis [Epub ahead of print]

  20. Kalandar-Zadeh K, Cano NJ, Budde K et al (2011) Diets and enteral supplements for improving outcomes in chronic kidney disease. Nat Rev Nephrol 7:369–384

    Article  Google Scholar 

  21. Kalandar-Zadeh K, Mehrotra R, Fouque D, Kopple JD (2004) Metabolic acidosis and malnutrition-inflammation complex syndrome in chronic renal failure. Semin Dialysis 17:455–465

    Article  Google Scholar 

  22. Krapf R, Vetsch R, Vetsch W, Hulter HN (1992) Chronic metabolic acidosis increases the serum concentration of 1,25-dihydroxyvitamin D in humans by stimulating its production rate. Critical role of acidosis-induced renal hypophosphatemia. J Clin Invest 90:2456–2463

    Article  PubMed  CAS  Google Scholar 

  23. Kraut JA, Kurtz I (2005) Metabolic acidosis of CKD: diagnosis, clinical characteristics and treatment. Am J Kidney Dis 45:978–993

    Article  PubMed  CAS  Google Scholar 

  24. Kraut JA, Madias NE (2012) Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol 8:589–601

    Article  PubMed  CAS  Google Scholar 

  25. Krieger NS, Culbertson CD, Kyker-Snowman K, Bushinsky DA (2012) Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am J Physiol Renal Physiol 303:F431–F436

    Article  PubMed  CAS  Google Scholar 

  26. Krieger NS, Sessler NE, Bushinsky DA (1992) Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol Renal Physiol 262:F442–F448

    CAS  Google Scholar 

  27. Lowrie EG, Lew NL (1990) Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 15:458–482

    PubMed  CAS  Google Scholar 

  28. Luft F, Zemel MB, Sowers JA et al (1990) Sodium bicarbonate and sodium chloride: effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J Hypertens 8:663–670

    Article  PubMed  CAS  Google Scholar 

  29. Lyon DM, Dunlop DM, Stewart CP (1931) The alkaline treatment of chronic nephritis. Lancet 218:1009–1013

    Article  Google Scholar 

  30. Mathur RP, Dash SC, Gupta N et al (2006) Effects of correction of metabolic acidosis on blood urea and bone metabolism in patients with mild to moderate chronic kidney disease: a prospective randomized single blind controlled trial. Ren Fail 28:1–5

    Article  PubMed  CAS  Google Scholar 

  31. May RC, Kelly RA, Mitch WE (1987) Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis. J Clin Invest 79:1099–1103

    Article  PubMed  CAS  Google Scholar 

  32. Mehrotra R, Kopple JD, Wolfson M (2003) Metabolic acidosis in maintenance dialysis patients: clinical considerations. Kidney Int (88):S13–S25

    Google Scholar 

  33. Mitchell JH, Wildenthal K, Johnson RL Jr (1972) The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int 1:375–389

    Article  PubMed  CAS  Google Scholar 

  34. Movilli E, Zani R, Carli O et al (2001) Direct effect of the correction of acidosis on plasma parathyroid hormone concentrations, calcium and phosphate in hemodialysis patients: a prospective study. Nephron 87:257–262

    Article  PubMed  CAS  Google Scholar 

  35. Mujais S (2003) Acid-base profile in patients on PD. Kidney Int Suppl (88):S26–S36

    Article  Google Scholar 

  36. Navaneethan SD, Schold JS, Arrigian S et al (2011) Serum bicarbonate and mortality in stage 3 and stage 4 chronic kidney disease. Clin J Am Soc Nephrol 6:2395–2402

    Article  PubMed  CAS  Google Scholar 

  37. K/DOQI, National Kidney Foundation (2000) Clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis 35(6 Suppl 2):S1–S140

    Google Scholar 

  38. Price SR, England BK, Bailey JL et al (1994) Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am J Physiol 267:C955–C960

    PubMed  CAS  Google Scholar 

  39. Roderick PJ, Willis NS, Blakeley S et al (2009) Correction of chronic metabolic acidosis for chronic kidney disease patients. Cochrane Database Syst Rev (1):CD001890

    Google Scholar 

  40. Van Slyke AC, Cheng YM, Mafi P et al (2012) Proton block of the pore underlies the inhibition of hERG cardiac K+ channels during acidosis. J Physiol Cell Physiol 302:C1797–C1806

    Article  Google Scholar 

  41. Wesson DE, Simoni J, Broglio K, Sheather S (2011) Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Renal Physiol 300:F830–F837

    Article  PubMed  CAS  Google Scholar 

  42. Abramowitz MK, Hostetter TH, Melamed ML (2012) The serum anion gap is altered in early kidney disease and associates with mortality. Kidney Int 82:701–709

    Article  PubMed  CAS  Google Scholar 

  43. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM (2009) Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 20(9):2075–2084

    Article  Google Scholar 

  44. Kovesdy CP, Anderson JE, Kalantar-Zadeh K (2009) Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD. Nephrol Dial Transplant 24(4):1232–1237

    Article  PubMed  CAS  Google Scholar 

  45. Kovesdy CP (2012) Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD? Nephrol Dial Transplant 27(8):3056–3062

    Article  PubMed  CAS  Google Scholar 

  46. Mahajan A, Simoni J, Sheather SJ et al (2010) Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 78(3):303–309

    Article  PubMed  CAS  Google Scholar 

  47. Shah SN, Abramowitz M, Hostetter TH, Melamed ML (2009) Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis 54(2):270–277

    Article  PubMed  CAS  Google Scholar 

  48. Williams AJ, Dittmer ID, McArley A, Clarke J (1997) High bicarbonate dialysate in haemodialysis patients: effects on acidosis and nutritional status. Nephrol Dial Transplant 12(12):2633–2637

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyer, J. Chronische metabolische Azidose bei Niereninsuffizienz. Nephrologe 7, 472–480 (2012). https://doi.org/10.1007/s11560-012-0670-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-012-0670-7

Schlüsselwörter

Keywords

Navigation