Skip to main content

Advertisement

Log in

Diagnostik des Nierenzellkarzinoms

Diagnostics of renal cell carcinoma

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Die häufige Anwendung bildgebender Verfahren hat zu einem Anstieg der Zahl der zufällig entdeckten Nierenzellkarzinome („renal cell carcinomas“, RCC) geführt. Insbesondere die Inzidenz kleiner asymptomatischer Nierenmassen hat signifikant zugenommen. Infolge erheblicher Fortschritte im Therapiemanagement der RCC, z. B. neue Ansätze in der „Nephron-sparing“-Chirurgie für lokalisierte Tumoren, die <4 cm groß sind, wird die Schnittbildgebung für eine detailliertere präoperative Charakterisierung der Nierenmassen erforderlich. Die meisten Nierentumoren (80%) werden zufällig bei Ultraschalluntersuchungen (US) diagnostiziert. Die Detektionsrate kann mithilfe der farbcodierten Duplexsonographie oder des kontrastverstärkten Ultraschalls („contrast-enhanced ultrasound“, CEUS) sogar noch verbessert werden. Ist eine genaue US-Diagnose nicht möglich, kann die Computertomographie (CT) helfen, komplizierte zystische Nierenläsionen weiterzucharakterisieren. Heute ist die CT immer noch der Goldstandard für die Beurteilung der primären Tumorausdehnung und des Staging. Das wichtigste Kriterium für die Bewertung der Malignität von Nierenläsionen ist der durch Kontrastverstärkung gewonnene Beweis. Die CT kann auch eine Differenzierung zwischen nichtbösartigen soliden Massen, wie Angiomyolipomen und Adenomen, sowie bösartigen Nierentumoren unterstützen. Auch die Diagnose von Lymphomen ist möglich. Die Magnetresonanztomographie (MRT) bietet einen besseren Weichteilkontrast und ist der CT in der Diagnose möglicher vaskulärer Beteiligung und einer Bewertung von Tumorzapfen der V. cava inferior überlegen. Die Differenzierung in RCC-Subtypen, Angiomyolipome und eine Unterscheidung zwischen einfachen sowie komplexen Nierenzysten sind ebenfalls möglich. Das Grading der verschiedenen Nierenzellkarzinome kann präoperativ mithilfe der dynamischen kontrastverstärkten MRT oder durch eine Messung der Perfusion und Diffusion innerhalb des Nierentumors beurteilt werden. Die Kombination Positronen-Emissions-Tomographie/Computertomographie (PET/CT) ist aufgrund der niedrigen Sensitivität und Verlässlichkeit für diagnostische Routineuntersuchungen ungeeignet. Dennoch kann die PET eine wichtige Rolle für die Diagnose von Fernmetastasen und die postoperative Überwachung von fortgeschrittenen Nierentumoren spielen. In einigen Fällen ist eine komplementäre Anwendung radiologischer Bildgebungsmodalitäten (US, CT, MRT oder PET/CT) für die genaue Differenzierung der Nierenmassen und eine Diagnose von Nierenzellkarzinomen notwendig.

Abstract

The frequent use of imaging modalities has led to a rising number of incidentally detected renal cell carcinomas (RCC). Especially the incidence of small asymptomatic renal masses has significantly increased. Due to considerable progress in disease management of RCC, for example new approaches in nephron-sparing surgery for localized tumors less than 4 cm, cross-sectional imaging is required for a more detailed preoperative characterization of renal masses. Most renal tumors (80%) are diagnosed incidentally by ultrasound examination (US). The detection rate can even be improved using duplex sonography or contrast-enhanced ultrasound (CEUS). If an accurate diagnosis is not possible with ultrasound, computed tomography (CT) examination may help to further qualify complicated cystic lesions of the kidneys. Computed tomography (CT) is still the reference standard for diagnosing primary tumor extent as well as for tumor staging. The most important criterion for assessing malignancy in a renal lesion is the evidence supplied by contrast-enhancement. Computed tomography also facilitates a differentiation of benign solid masses, such as angiomyolipomas and adenomas from malignant renal tumors and even the diagnosis of lymphomas is possible. Magnetic resonance imaging offers a better soft tissue contrast and is superior to a CT examination in diagnosing possible venous involvement and in the evaluation of inferior vena cava tumor thrombi. The differentiation of RCC subtypes, angiomyolipomas as well as distinguishing simple from complex renal cysts is also possible. The grading of different RCCs can be preoperatively estimated using dynamic contrast-enhanced MRI or measuring perfusion and diffusion within renal tumors. Due to a low sensitivity positron emission tomography/computed tomography (PET/CT) is not part of the routine diagnostic management for RCC. Nevertheless it plays an important role in the diagnosis of distant metastases and postoperative surveillance of advanced renal tumors. In some cases a complementary application of radiological imaging modalities, such as US, CT, MRI or PET/CT is required for an accurate differentiation of renal masses and for the diagnosis of RCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Altekruse SF, Kosary CL, Krapcho M et al (Hrsg) (2010) SEER Cancer Statistics Review, 1975–2007, National Cancer Institute. Bethesda, MD, http://www.seer.cancer.gov/csr/1975_2007/, based on November 2009 SEER data submission, posted to the SEER web site

  2. Chow WH, Devesa SS, Warren JL, Fraumeni JF (1999) Rising incidence of renal cell carcinoma in the United States. JAMA 281:1628–1631

    Article  PubMed  CAS  Google Scholar 

  3. Levi F, Ferlay J, Galeone C et al (2008) The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int 101(8):949–958

    Article  PubMed  Google Scholar 

  4. Robert Koch-Institut und Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (2010) Krebs in Deutschland 2005/2006 Häufigkeiten und Trends, 7 Ausgabe. Beiträge zur Gesundheitsberichterstattung des Bundes. Robert Koch-Institut, Berlin

  5. Sanz-Ortega J, Olivier C, Perez Segura P et al (2009) Hereditary renal cancer. Actas Urol Esp 33:127–133

    Article  PubMed  Google Scholar 

  6. Lonser RR, Glenn GM, Walther M et al (2003) von Hippel-Lindau disease. Lancet 361:2059–2067

    Article  PubMed  CAS  Google Scholar 

  7. Hunt JD, Hel OL van der, McMillan GP et al (2005) Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int J Cancer 114(1):101–108

    Article  PubMed  CAS  Google Scholar 

  8. Hollingsworth JM, Miller DC, Daignault S et al (2006). Rising incidence of small renal masses: a need to reassess treatment effects. J Natl Cancer Inst 98:1331–1334

    Article  PubMed  Google Scholar 

  9. Robbin ML, Lockhardt ME, Barr RG (2003) Renal imaging with ultrasound contrast: current status. Radiol Clin North Am 41:963–978

    Article  PubMed  Google Scholar 

  10. Bosniak MA (1997) Diagnosis and management of patients with complicated cystic lesions of the kidney. AJR Am J Roentgenol 169:819–821

    PubMed  CAS  Google Scholar 

  11. Clevert DA, Minaifar N, Weckbach S et al (2008) Multislice computed tomography versus contrast-enhanced ultrasound in evaluation of complex cystic renal masses using the Bosniak classification system. Clin Hemorheol Microcirc 39:171–178

    PubMed  Google Scholar 

  12. Park BK, Kim B, Kim SH et al (2007) Assessment of cystic renal masses based on Bosniak classification: comparison of CT and contrast-enhanced US. Eur J Radiol 61:310–314

    Article  PubMed  Google Scholar 

  13. Siegel CL, Middleton WD, Teefey SA, McClennan BL (1996) Angiomyolipoma and renal cell carcinoma: US differentiation. Radiology 198:789–793

    PubMed  CAS  Google Scholar 

  14. Catalano C, Fraioli F, Laghi A et al (2003). High-resolution multidetector CT in the preoperative evaluation of patients with renal cell carcinoma. AJR Am J Roentgenol 180:1271–1277

    PubMed  CAS  Google Scholar 

  15. Leibovich BC, Blute NL, Cheville JC et al (2004) Nephron sparing surgery for appropriately selected renal cell carcinoma between 4 and 7 cm results in outcomes similar to radical nephrectomy. J Urol 171:1066–1070

    Article  PubMed  Google Scholar 

  16. Coll DM, Smith RC (2007) Update on radiological imaging of renal cell carcinoma. BJU Int 99:1217–1222

    Article  PubMed  Google Scholar 

  17. Israel GM, Bosniak MA (2005) How to do it: evaluating renal masses. Radiology 236:441–450

    Article  PubMed  Google Scholar 

  18. Hallscheidt PJ, Fink C, Soder M et al (2005) Preoperative staging of renal cell carcinoma with inferior vena cava thrombus using multi-slice CT and MRI: prospective study with histopathological correlation. J Comput Assist Tomogr 29:64–68

    Article  PubMed  Google Scholar 

  19. Van Der Molen AJ, Cowan NC, Mueller-Lisse UG et al (2008) CT Urography Working Group of the European Society of Urogenital Radiology (ESUR). CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18:4–17

    Article  Google Scholar 

  20. Prasad SR, Surabhi VR, Menias CO et al (2008) Benign renal neoplasms in adults: cross-sectional imaging findings. AJR Am J Roentgenol 190:158–164

    Article  PubMed  Google Scholar 

  21. Bosniak MA, Megibow AJ, Hulnick DH et al (1988) CT diagnosis of renal angiomyolipoma: the importance of detecting small amounts of fat. AJR Am J Roentgenol 151:497–501

    PubMed  CAS  Google Scholar 

  22. Eble JN, Sauter G, Epstein JI, Sesterhenn IA, (Hrsg) (2004) Pathology and genetics of tumors of the urinary system and male genital organs. World Health Organisation Classification of Tumors. IARC, Lyon, France, S 7

  23. Choudhary S, Rajesh A, Mayer NJ et al (2009) Renal oncocytoma: CT features cannot reliably distinguish oncocytoma from other renal neoplasms. Clin Radiol 64:517–522

    Article  PubMed  CAS  Google Scholar 

  24. Cohan RH, Dunnick NR, Leder RA, Baker ME (1990) Computed tomography of renal lymphoma. J Comput Assist Tomogr 14:933–938

    Article  PubMed  CAS  Google Scholar 

  25. Pickhardt PJ, Lonergan GJ, Davis CJ Jr et al (2000) From the archives of the AFIP. Infiltrative renal lesions: radiologic-pathologic correlation. Armed Forces Institute of Pathology. Radiographics 20:215–243

    PubMed  CAS  Google Scholar 

  26. Urban BA, Fishman EK (2000) Renal lymphoma: CT patterns with emphasis on helical CT. Radiographics 20:197–212

    PubMed  CAS  Google Scholar 

  27. Warren KS, McFarlane J (2005) The Bosniak classification of renal cystic masses. BJU Int 95:939–942

    Article  PubMed  Google Scholar 

  28. Sobin LH, Gospodariwicz M, Wittekind C (Hrsg) (2009) TNM classification of malignant tumors, 7. Aufl. UICC International Union Against Cancer, Wiley-Blackwell, Hoboken, S 255–257

  29. Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17(6):1471–1474

    Article  PubMed  Google Scholar 

  30. Ljungberg B, Cowan NC, Hanbury DC et al (2010) EAU guidelines on renal cell carcinoma: The 2010 update. Eur Urol 58:398–406

    Article  PubMed  Google Scholar 

  31. Thomsen HS, European Society of Urogenital Radiology (2007) ESUR guideline: gadolinium-based contrast media and nephrogenic systemic fibrosis. Eur Radiol 17:2692–2696

    Article  PubMed  Google Scholar 

  32. Palmowski M, Schifferdecker I, Zwick S et al (2010) Tumor perfusion assessed by dynamic contrast-enhanced MRI correlates to the grading of renal cell carcinoma: initial results. Eur J Radiol 74:176–180

    Article  Google Scholar 

  33. Petralia G, Thoeny HC (2010) DW-MRI of the urogenital tract: applications in oncology. Cancer Imaging 4:S112–S123

    Article  Google Scholar 

  34. Huber J, Hallscheidt P, Wagener N et al (2010) Tumors of the kidney: CT vs. MRT. Nearly equal alternatives with minor differences. Urologe A 49:345–350

    Article  PubMed  CAS  Google Scholar 

  35. Israel GM, Hindman N, Bosniak MA (2004) Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology 231:365–371

    Article  PubMed  Google Scholar 

  36. Balci NC, Semelka RC, Patt RH et al (1999) Complex renal cysts: findings on MR imaging. AJR Am J Roentgenol 172:1495–1500

    PubMed  CAS  Google Scholar 

  37. Ozülker T, Ozülker F, Ozbek E, Ozpaçaci T (2011) A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun 32:265–272

    Article  PubMed  Google Scholar 

  38. Park JW, Jo MK, Lee HM (2009) Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int 103:615–619

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hallscheidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, F., Schifferdecker, I., Rheinheimer, S. et al. Diagnostik des Nierenzellkarzinoms. Nephrologe 6, 306–314 (2011). https://doi.org/10.1007/s11560-010-0518-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-010-0518-y

Schlüsselwörter

Keywords

Navigation