Skip to main content

Das hämolytisch-urämische Syndrom im Kindesalter

Hemolytic-uremic syndrome

Zusammenfassung

Das hämolytisch-urämische Syndrom (HUS) ist mit die häufigste Ursache des akuten Nierenversagens im Kindesalter. Es besteht aus der Trias Coombs-negative akute Hämolyse, Thrombozytopenie und akutem Nierenversagen. Das HUS stellt eine heterogene Gruppe mit unterschiedlicher Pathogenese und Verlaufsform dar. Histologisch ist allen Formen die thrombotische Mikroangiopathie (TMA) gemeinsam. Aus therapeutischer und prognostischer Sicht hat es sich in der Pädiatrie bewährt, das HUS in das klassische, diarrhöassoziierte HUS (D+ HUS) und das atypische, nicht diarrhöassoziierte HUS (D− HUS) einzuteilen. Dabei liegt im Kindesalter in über 90% aller Fälle ein D+ HUS vor. Obwohl in den letzten Jahren zahlreiche Ursachen des D− HUS identifiziert werden konnten, bleibt ein großer Teil der Fälle pathogenetisch immer noch unklar. Während das D+ HUS eine insgesamt gute Prognose hat, ist die des D− HUS eher ungünstig. Im vorliegenden Beitrag werden die verschiedenen Formen des HUS im Hinblick auf Ätiologie, therapeutische Optionen und Prognose erläutert.

Abstract

Hemolytic-uremic syndrome (HUS) is among the most common causes of acute renal failure in childhood. A heterogenous group of diseases with varying etiology and clinical course, HUS is characterized by Coombs-negative acute hemolysis, thrombocytopenia, and acute renal failure. Histologically, all forms have thrombotic microangiopathy in common. In terms of therapeutic options and prognostic factors, it is reasonable to differentiate between classic diarrhea-associated (D+) HUS and atypical HUS not associated with diarrhea (D− HUS). In childhood 90% of all cases are D+ HUS, with a more favorable prognosis, whereas the prognosis in D− HUS is rather poor. Although many underlying causes for different D− HUS forms have been identified in the last few years, for many cases the pathogenesis remains unclear. In the following we discuss etiology, prognosis, and therapeutic options for the different forms of HUS.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bell BP, Griffin PM, Lozano P et al. (1997) Predictors of hemolytic uremic syndrome in children during a large outbreak of Escherichia coli O157: H7 infections. Pediatrics 100: E12

    Article  PubMed  CAS  Google Scholar 

  2. Besbas N, Karpman D, Landau D et al. (2006) A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int 70: 423–431

    PubMed  CAS  Google Scholar 

  3. Bresin E, Daina E, Noris M et al. (2006) Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin J Am Soc Nephrol 1: 88–99

    Article  PubMed  CAS  Google Scholar 

  4. Desch K, Motto D (2007) Is there a shared pathophysiology for thrombotic thrombocytopenic purpura and hemolytic-uremic syndrome? J Am Soc Nephrol 18: 2457–2460

    Article  PubMed  Google Scholar 

  5. Eder AF, Manno CS (2001) Does red-cell T activation matter? Br J Haematol 114: 25–30

    Article  PubMed  CAS  Google Scholar 

  6. Elliott EJ, Robins-Browne RM, O’loughlin Ev et al. (2001) Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child 85: 125–131

    Article  PubMed  CAS  Google Scholar 

  7. Franchini M, Zaffanello M, Veneri D (2006) Advances in the pathogenesis, diagnosis and treatment of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Thromb Res 118: 177–184

    Article  PubMed  CAS  Google Scholar 

  8. Garg AX, Suri RS, Barrowman N et al. (2003) Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290: 1360–1370

    Article  PubMed  CAS  Google Scholar 

  9. Jokiranta TS, Zipfel PF, Fremeaux-Bacchi V et al. (2007) Where next with atypical hemolytic uremic syndrome? Mol Immunol 44: 3889–3900

    Article  PubMed  CAS  Google Scholar 

  10. Kanno Y, Kobayashi H, Rai T et al. (2004) Hemolytic uremic syndrome associated with Shiga toxin producing Escherichia coli infection in a healthy adult woman. Intern Med 43: 620–623

    Article  PubMed  Google Scholar 

  11. Karch H, Friedrich AW, Gerber A et al. (2006) New aspects in the pathogenesis of enteropathic hemolytic uremic syndrome. Semin Thromb Hemost 32: 105–112

    Article  PubMed  CAS  Google Scholar 

  12. Kavanagh D, Goodship TH, Richards A (2006) Atypical haemolytic uraemic syndrome. Br Med Bull 77–78: 5–22

  13. Kavanagh D, Richards A, Fremeaux-Bacchi V et al. (2007) Screening for complement system abnormalities in patients with atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 2: 591–596

    Article  PubMed  CAS  Google Scholar 

  14. Koster F, Levin J, Walker L et al. (1978) Hemolytic-uremic syndrome after shigellosis. Relation to endotoxemia and circulating immune complexes. N Engl J Med 298: 927–933

    PubMed  CAS  Google Scholar 

  15. Landau D, Shalev H, Levy-Finer G et al. (2001) Familial hemolytic uremic syndrome associated with complement factor H deficiency. J Pediatr 138: 412–417

    Article  PubMed  CAS  Google Scholar 

  16. Noris M, Bucchioni S, Galbusera M et al. (2005) Complement factor H mutation in familial thrombotic thrombocytopenic purpura with ADAMTS13 deficiency and renal involvement. J Am Soc Nephrol 16: 1177–1183

    Article  PubMed  CAS  Google Scholar 

  17. Orth D, Grif K, Khan AB et al. (2007) The Shiga toxin genotype rather than the amount of Shiga toxin or the cytotoxicity of Shiga toxin in vitro correlates with the appearance of the hemolytic uremic syndrome. Diagn Microbiol Infect Dis 59: 235–242

    Article  PubMed  CAS  Google Scholar 

  18. Rowe PC, Orrbine E, Lior H et al. (1998) Risk of hemolytic uremic syndrome after sporadic Escherichia coli O157: H7 infection: results of a Canadian collaborative study. Investigators of the Canadian Pediatric Kidney Disease Research Center. J Pediatr 132: 777–782

    Article  PubMed  CAS  Google Scholar 

  19. Sprouse JT, Wong CS, Chandler WL et al. (2001) Thrombogenic alleles, Escherichia coli O157: H7 infections, and hemolytic uremic syndrome. Blood Coagul Fibrinolysis 12: 283–288

    Article  PubMed  CAS  Google Scholar 

  20. Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 1073–1086

    PubMed  CAS  Google Scholar 

  21. Thurman JM, Holers VM (2006) The central role of the alternative complement pathway in human disease. J Immunol 176: 1305–1310

    PubMed  CAS  Google Scholar 

  22. Trachtman H, Cnaan A, Christen E et al. (2003) Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial. JAMA 290: 1337–1344

    Article  PubMed  CAS  Google Scholar 

  23. Zimmerhackl LB, Scheiring J, Prufer F et al. (2007) Renal transplantation in HUS patients with disorders of complement regulation. Pediatr Nephrol 22: 10–16

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Müller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thumfart, J., Müller, D. Das hämolytisch-urämische Syndrom im Kindesalter. Nephrologe 3, 297–307 (2008). https://doi.org/10.1007/s11560-008-0201-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-008-0201-8

Schlüsselwörter

Keywords