Skip to main content
Log in

No bull: dung-dwelling mushrooms show reproductive trait syndromes different from their non-coprophilous allies

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The spores of most coprophilous mushrooms require passage through a mammalian gut. Guts and faeces constitute a chemically and microbially aggressive environment. Hence, the spores need to be armed, e.g. by melanisation and thick walls, possibly leading to large spores due to volume constraints. Conversely, litter is a less stressful substrate that may become colonised by mushrooms with less fortified spores. Compared with litter, dung pats are spatially constrained, which limits mycelial growth. Small mycelia can only produce small fruit bodies. Moreover, on quickly perishing faeces, fruiting takes place under fierce competition by microbes and dung-dwelling invertebrates. Therefore, coprophilous mushrooms are forced to mature fast, implying small fruit bodies as well. Competition in spatially less constrained litter substrates can be pronounced but should not lead to quick nutrient depletion as in dung, hence would allow for mushroom assemblages with on average larger fruit bodies. To find evidence for our assumptions, we compiled a database of fruit body and spore sizes of mushroom genera which contain coprophilous species, comprising 633 (including ca. 20% coprophilous) species across 18 genera worldwide. The data set was subjected to a phylogenetically informed statistical analysis. Our hypotheses were confirmed though the selective pressure of the faecal environment appears to be more forceful on spores considering the fact that the mean spore size differences are more pronounced than differences in mean fruit body size. It would be worthwhile to further elucidate this phenomenon and the coprophilous trait syndrome in general with molecular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-Trigueros CA, Hempel S, Powell JR, Anderson IC, Antonovics J, Bergmann J, Cavagnaro TR, Chen B, Hart MM, Klironomos J (2015) Branching out: towards a trait-based understanding of fungal ecology. Fungal Biol Rev 29(1):34–41

    Article  Google Scholar 

  • Bässler C, Ernst R, Cadotte M, Heibl C, Müller J (2014) Near-to-nature logging influences fungal community assembly processes in a temperate forest. J Appl Ecol 51:939–948

    Article  Google Scholar 

  • Bässler C, Heilmann-Clausen J, Karasch P, Brandl R, Halbwachs H (2015) Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol 17:205–212

    Article  Google Scholar 

  • Bässler C, Halbwachs H, Karasch P, Holzer H, Gminder A, Krieglsteiner L, Gonzalez RS, Müller J, Brandl R (2016a) Mean reproductive traits of fungal assemblages are correlated with resource availability. Ecol Evol 6(2):582–592

    Article  Google Scholar 

  • Bässler C, Müller J, Cadotte MW, Heibl C, Bradtka JH, Thorn S, Halbwachs H (2016b) Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecol Indic 65:149–160

    Article  Google Scholar 

  • Buller AHR (1931) Researches on Fungi volume IV. Longmans, Green and Co., London

    Google Scholar 

  • Calhim S, Halme P, Petersen JH, Læssøe T, Bässler C, Heilmann-Clausen J (2018) Fungal spore diversity reflects substrate-specific deposition challenges. Sci Rep 8(1):5356. https://doi.org/10.1038/s41598-018-23292-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of saprotrophic fungi. Longman

  • Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific Publications

  • Dawson SK, Boddy L, Halbwachs H, Bässler C, Andrew C, Crowther TW, Heilmann-Clausen J, Nordén J, Ovaskainen O, Jönsson M (2018) Handbook for the measurement of macrofungal functional traits; a start with basidiomycete wood fungi. Funct Ecol 33(3):372–387

    Article  Google Scholar 

  • Dickinson CH (2012) Biology of plant litter decomposition vol. 1. Elsevier Science

  • Dix NJ, Webster J (1995) Fungal Ecology. Chapman and Hall, London

    Book  Google Scholar 

  • Feofilova E, Tereshina V, Garibova L, Zav'yalova L, Memorskaya A, Maryshova N (2004) Germination of basidiospores of Agaricus bisporus. Appl Biochem Microbiol 40(2):186–191

    Article  CAS  Google Scholar 

  • Fischer MW, Stolze-Rybczynski JL, Cui Y, Money NP (2010) How far and how fast can mushroom spores fly? Physical limits on ballistospore size and discharge distance in the Basidiomycota. Fungal Biol 114(8):669–675

    Article  Google Scholar 

  • Garnica S, Weiss M, Walther G, Oberwinkler F (2007) Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. Mycol Res 111(9):1019–1029

    Article  CAS  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation-a missing term in the science of form. Paleobiology 8(1):4–15

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond Ser B Biol Sci 326(1233):119–157

    CAS  Google Scholar 

  • Halbwachs H, Bässler C (2015) Gone with the wind – a review on basidiospores of lamellate agarics. Mycosphere 6:78–112

    Article  Google Scholar 

  • Halbwachs H, Brandl R, Bässler C (2015) Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles. Fungal Ecol 17:197–204

    Article  Google Scholar 

  • Halbwachs H, Simmel J, Bässler C (2016) Tales and mysteries of fungal fruiting: how morphological and physiological traits affect a pileate lifestyle. Fungal Biol Rev 30(2):36–61

    Article  Google Scholar 

  • Halbwachs H, Heilmann-Clausen J, Bässler C (2017) Mean spore size and shape in ectomycorrhizal and saprotrophic assemblages show strong responses under resource constraints. Fungal Ecol 26:59–64

    Article  Google Scholar 

  • Halbwachs H, Karasch P, Simmel J (2018) Small can be beautiful: Ecological trade-offs related to basidiospore size. Asian J Mycol 1(1):15–21

    Article  Google Scholar 

  • Harper J, Webster J (1964) An experimental analysis of the coprophilous fungus succession. Trans Br Mycol Soc 47(4):511–530

    Article  Google Scholar 

  • Kauserud H, Colman JE, Ryvarden L (2008) Relationship between basidiospore size, shape and life history characteristics: a comparison of polypores. Fungal Ecol 1(1):19–23

    Article  Google Scholar 

  • Knudsen H, Vesterholt J (2012) Funga Nordica: Agaricoid, boletoid, clavaroid, cyphelloid and gastroid genera. Nordsvamp, Copenhagen

    Google Scholar 

  • Krah FS, Büntgen U, Schaefer H, Müller J, Andrew C, Boddy L, Diez J, Egli S, Freckleton R, Gange AC, Halvorsen R, Heegaard E, Heideroth A, Heibl C, Heilmann-Clausen J, Høiland K, Kar R, Kauserud H, Kirk PM, Kuyper TW, Krisai-Greilhuber I, Norden J, Papastefanou P, Senn-Irlet B, Bässler C (2019) European mushroom assemblages are darker in cold climates. Nature Communications 10 (1)

  • Krug JC, Benny GL, Keller HW (2004) Coprophilous fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Academic Press, pp 467–499

  • Larsen K (1971) Danish endocoprophilous fungi, and their sequence of occurrence. Botanisk Tidsskrift 66:1–32

    Google Scholar 

  • Lodha B (1974) Decomposition of digested litter. In: Dickinson CH (ed) Biology of plant litter decomposition vol. 1. Academic Press, London & New York, pp 213–241

    Chapter  Google Scholar 

  • Luo H, Li X, Li G, Pan Y, Zhang K (2006) Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Appl Environ Microbiol 72(4):2982–2987

    Article  CAS  Google Scholar 

  • Malloch D, Blackwell M (1992) Dispersal of fungal diaspores. In: Carroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker Inc., New York, pp 147–171

    Google Scholar 

  • Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo J-M, Ge Z-W, Yang Z-L, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98(6):982–995

    Article  Google Scholar 

  • Misra J, Pandey S, Gupta AK (2014) Coprophilous fungi—a review and selected bibliography. In: Misra J, Tewari J, Deshmukh S, Vágvölgyi C (eds) Fungi From Different Substrates. CRC Press, pp 178–208

  • Moore D, Gange AC, Gange EG, Boddy L (2008) Fruit bodies: their production and development in relation to environment. In: Boddy L, Frankland J, West P (eds) Ecology of saprotrophic basidiomycetes, vol 28. Elsevier - Academic Press, London, pp 79–103

    Chapter  Google Scholar 

  • Mycobank (2004-2020) Mycobank database - fungal databases, nomenclature & species banks Retrieved 17 February 2020, from www.mycobank.org

  • Norros V, Rannik Ü, Hussein T, Petäjä T, Vesala T, Ovaskainen O (2014) Do small spores disperse further than large spores? Ecology 95(6):1612–1621

    Article  Google Scholar 

  • Pringle A, Vellinga E, Peay K (2015) The shape of fungal ecology: does spore morphology give clues to a species' niche? Fungal Ecol 17:213–216

    Article  Google Scholar 

  • Richardson MJ (2001) Diversity and occurrence of coprophilous fungi. Mycol Res 105(4):387–402

    Article  Google Scholar 

  • Richardson MJ, Watling R (1968) Keys to fungi on dung. The British Mycological Society

  • Sarrocco S (2016) Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens. Pest Manag Sci 72(4):643–652

    Article  CAS  Google Scholar 

  • Tóth B, Feest A (2007) A simple method to assess macrofungal sporocarp biomass for investigating ecological change. Botany 85(7):652–658

    Google Scholar 

  • Van der Wal R, Irvine J, Stien A, Shepherd N, Albon S (2000) Faecal avoidance and the risk of infection by nematodes in a natural population of reindeer. Oecologia 124(1):19–25

    Article  Google Scholar 

  • Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol 3:668–678

    Article  Google Scholar 

  • Watling R, Richardson M (2010) Coprophilous fungi of the Falkland Islands. Edinb J Bot 67(3):399–423

    Article  Google Scholar 

  • Webster J (1970) Presidential address: coprophilous fungi. Trans Br Mycol Soc 54(2):161–180

    Article  Google Scholar 

  • Wheeler W, Noller C (1977) Gastrointestinal tract pH and starch in feces of ruminants. J Anim Sci 44(1):131–135

    Article  CAS  Google Scholar 

  • Wicklow DT (1981) The coprophilous fungal community: a mycological system for examining ecological ideas. In: Wicklow DT, Carroll GC (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker, Inc., New York, pp 47–76

    Google Scholar 

  • Wicklow DT (1992) The coprophilous fungal community: an experimental system. In: Carroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker, Inc., New York, pp 715–728

    Google Scholar 

  • Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW (2019) Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev. https://doi.org/10.1111/brv.12570

Download references

Acknowledgements

We thank Gareth Griffith (Aberystwyth) for pointing out relevant literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Halbwachs.

Additional information

Section Editor: Roland Kirschner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the “Topic collection on Basidiomycote Mycology in honor of Franz Oberwinkler who passed away in March 2018”

Electronic supplementary material

ESM 1

(PDF 89 kb)

ESM 2

(XLSX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbwachs, H., Bässler, C. No bull: dung-dwelling mushrooms show reproductive trait syndromes different from their non-coprophilous allies. Mycol Progress 19, 817–824 (2020). https://doi.org/10.1007/s11557-020-01604-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-020-01604-5

Keywords

Navigation