Abstract
Isolating genetic markers is often costly and time-consuming for non-model fungal species. However, these markers are of primary importance to identify the origin of invasive species and to infer their reproductive mode and dispersal ability. We slightly modified a recent molecular method to quickly isolate and validate single-nucleotide polymorphism (SNP) markers, from a first Erysiphe alphitoides draft genome, one of the main causal agent of oak powdery mildew in Europe. Although the draft assembly was strongly fragmented (555,289 contigs), we successfully isolated 1700 SNPs from 75 single-copy genes conserved in most fungal genomes. Ninety percent of them allowed to clearly distinguish the two main Erysiphe species reported on European oaks: E. alphitoides and E. quercicola. Thirty-six SNPs, located in distinct genes, were then validated using a strategy of MassArray genotyping on 95 E. alphitoides isolates sampled in Europe. This genotyping showed that only monospore isolates had the expected haploid signature, whereas direct genotyping from field leaves showed signature of mixed infection. Considering haploid isolates, these markers led to the first results of population genetic diversity, and suggested that E. quercicola may have a more asexual reproduction than its sister species, E. alphitoides.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Raw sequencing data of the draft genome are available on the Bioproject PRJNA593204. The first assembly, contigs > 10 kb homologs to Blumeria graminis, and predicted genes are available on arachne.pierroton.inra.fr/AlphiGeno. Erysiphe alphitoides Jbrowse is available on https://urgi.versailles.inra.fr/jbrowse/gmod_jbrowse/?data=myData/AlphiGeno. Raw Ion Torrent sequencing data, scripts for detecting SNP, reference sequences for each amplicon from the E. alphitoides draft genome, MassArray genotyping data, and supplementary tables of this paper are available on https://doi.org/10.15454/UGMTBK.
References
Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102
Altschul S, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1006/jmbi.1990.9999
Amselem J, Cuomo CA, van Kan JAL et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230. https://doi.org/10.1371/journal.pgen.1002230
Andrews S. (2010) FastQC: a quality control tool for high throughput sequence data. Available online http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139. https://doi.org/10.1111/j.1365-294X.2007.03535.x
Barrès B, Dutech C, Andrieux A, Halkett F, Frey P (2012) Exploring the role of asexual multiplication in poplar rust epidemics: impact on diversity and genetic structure. Mol Ecol 21:4996–5008. https://doi.org/10.1111/mec.12008
Chancerel E, Lamy J-B, Lesur I et al (2013) High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biol 11:50. https://doi.org/10.1186/1741-7007-11-50
Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. https://doi.org/10.1093/molbev/msl191
Desprez-Loustau M-L, Feau N, Mougou-Hamdane A, Dutech C (2011) Interspecific and intraspecific diversity in oak powdery mildews in Europe: coevolution history and adaptation to their hosts. Mycoscience. 52:165–173. https://doi.org/10.1007/s10267-010-0100-5
Desprez-Loustau M-L, Aguayo J, Dutech C et al (2016) An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Ann For Sci 73:45–67. https://doi.org/10.1007/s13595-015-0487-4
Desprez-Loustau M-L, Massot M, Feau N et al (2017) Further support of conspecificity of oak and mango powdery mildew and first report of Erysiphe quercicola and Erysiphe alphitoides on mango in mainland Europe. Plant Dis 101:1086–1093. https://doi.org/10.1094/PDIS-01-17-0116-RE
Desprez-Loustau M-L, Massot M, Toigo M et al (2018) From leaf to continent: the multi-scale distribution of an invasive cryptic pathogen complex on oak. Fungal Ecol 36:39–50. https://doi.org/10.1016/j.funeco.2018.08.001
Dutech C, Enjalbert J, Fournier E et al (2007) Challenges of microsatellite isolation in fungi. Fungal Genet Biol 44:933–949. https://doi.org/10.1016/j.fgb.2007.05.003
Dutech C, Prospero S, Heinzelmann R, Fabreguettes O, Feau N (2016) Rapid identification of polymorphic sequences for both phylogenetic and population genetic analyses in non-model species: the PHYLORPH method tested in Armillaria species. For Pathol 46:298–308. https://doi.org/10.1111/efp.12256
Dutech C, Labbe F, Capdevielle X, Lung-Escarmant B (2017) Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers. Fung Biol 121:550–560. https://doi.org/10.1016/j.funbio.2017.03.001
Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340
Ellis JS, Gilbey J, Armstrong A et al (2011) Microsatellite standardization and evaluation of genotyping error in a large multi-partner research programme for conservation of Atlantic salmon (Salmo salar L.). Genetica 139:353–367. https://doi.org/10.1007/s10709-011-9554-4
Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379
Estoup A, Jarne P, Cornuet J (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604. https://doi.org/10.1046/j.1365-294X.2002.01576.x
Faino L, Seidl MF, Datema E et al (2015) Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome. MBIO 6:e00936-15. https://doi.org/10.1128/mBio.00936-15
Feau N, Decourcelle T, Husson C et al (2011) Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model fungi. PLoS One 6:e0018803. https://doi.org/10.1371/journal.pone.0018803
Feau N, Lauron-Moreau A, Piou D et al (2012) Niche partitioning of the genetic lineages of the oak powdery mildew complex. Fungal Ecol 5:154–162. https://doi.org/10.1016/j.funeco.2011.12.003
Feau N, Beauseigle S, Bergeron M-J et al (2018) Genome-enhanced detection and identification (GEDI) of plant pathogens. PEERJ 6:e4392. https://doi.org/10.7717/peerj.4392
Feehan JM, Scheibel KE, Bourras S et al (2017) Purification of high molecular weight genomic DNA from powdery mildew for long-read sequencing. JOVE-J Visual Exp. https://doi.org/10.3791/55463
Frantzeskakis L, Kracher B, Kusch S et al (2018) Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19:381. https://doi.org/10.1186/s12864-018-4750-6
Fu L, Niu B, Zhu Z et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565
Gayral P, Melo-Ferreira J, Glemin S et al (2013) Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genet 9:e1003457. https://doi.org/10.1371/journal.pgen.1003457
Gladieux P, Feurtey A, Hood ME et al (2015) The population biology of fungal invasions. Mol Ecol 24:1969–1986. https://doi.org/10.1111/mec.13028
Griffon E, Maublanc A (1912) Les Microsphaera des Chênes. Bull Soc Mycol F 28:88–104
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:699–704
Gross A, Holdenrieder O, Pautasso M et al (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15:5–21. https://doi.org/10.1111/mpp.12073
Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010
Hamelin FM, Bisson A, Desprez-Loustau M-L et al (2016) Temporal niche differentiation of parasites sharing the same plant host: oak powdery mildew as a case study. Ecosphere 7. https://doi.org/10.1002/ecs2.1517
Hardy O, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482
Harvey MG, Smith BT, Glenn TC et al (2016) Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Syst Biol 65:910–924. https://doi.org/10.1093/sysbio/syw036
Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. https://doi.org/10.1093/bioinformatics/btr521
Kamvar ZN, Brooks JC, Gruenwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208. https://doi.org/10.3389/fgene.2015.00208
Kaplinski L, Andreson R, Puurand T, Remm M (2005) MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics 21:1701–1702. https://doi.org/10.1093/bioinformatics/bti219
Kisselstein B, Cadle-Davidson LE, Gadoury DM (2018) Investigation of Erysiphe necator population structure using amplicon sequencing (AmpSeq) without clonal isolation. Phytopath. 108:96
Lesur I, Le Provost G, Bento P et al (2015) The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics 16:112. https://doi.org/10.1186/s12864-015-1331-9
Li L, Stoeckert C, Roos D (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503
Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434. https://doi.org/10.1038/nbt.2198
Marcais B, Desprez-Loustau M-L (2014) European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Ann For Sci 71:633–642. https://doi.org/10.1007/s13595-012-0252-x
Marthey S, Aguileta G, Rodolphe F et al (2008) FUNYBASE: a FUNgal phYlogenomic dataBASE. BMC Bioinformatics 9:e456. https://doi.org/10.1186/1471-2105-9-456
Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846
Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231. https://doi.org/10.1111/mec.13243
Mougou A, Dutech C, Desprez-Loustau M-L (2008) New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. For Pathol 38:275–287. https://doi.org/10.1111/j.1439-0329.2008.00544.x
Puritz JB, Matz MV, Toonen RJ et al (2014) Demystifying the RAD fad. Mol Ecol 23:5937–5942. https://doi.org/10.1111/mec.12965
Queloz V, Gruenig CR, Berndt R et al (2011) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41:133–142. https://doi.org/10.1111/j.1439-0329.2010.00645.x
Ribeiro A, Golicz A, Hackett CA et al (2015) An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome. BMC Bioinformatics 16:382. https://doi.org/10.1186/s12859-015-0801-z
Rouxel M, Mestre P, Comont G et al (2013) Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. New Phytol 197:251–263. https://doi.org/10.1111/nph.12016
Santini A, Ghelardini L, De Pace C et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250. https://doi.org/10.1111/j.1469-8137.2012.04364.x
Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241–6246. https://doi.org/10.1073/pnas.1117018109
Selkoe K, Toonen R (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x
Spanu PD, Abbott JC, Amselem J et al (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546. https://doi.org/10.1126/science.1194573
Stanke M, Schoffmann O, Morgenstern B, Waack S (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7:62. https://doi.org/10.1186/1471-2105-7-62
Takamatsu S, Braun U, Limkaisang S et al (2007) Phylogeny and taxonomy of the oak powdery mildew Erysiphe alphitoides sensu lato. Mycol Res 111:809–826. https://doi.org/10.1016/j.mycres.2007.05.013
Takamatsu S, Ito Arakawa H, Shiroya Y et al (2015) First comprehensive phylogenetic analysis of the genus Erysiphe (Erysiphales, Erysiphaceae) I. The Microsphaera lineage. Mycologia 107:475–489. https://doi.org/10.3852/15-007
Tollenaere C, Susi H, Nokso-Koivisto J et al (2012) SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS One 7:e52492. https://doi.org/10.1371/journal.pone.0052492
Tonnabel J, Olivieri I, Mignot A et al (2014) Developing nuclear DNA phylogenetic markers in the angiosperm genus Leucadendron (Proteaceae): a next-generation sequencing transcriptomic approach. Mol Phylogenet Evol 70:37–46. https://doi.org/10.1016/j.ympev.2013.07.027
Tsykun T, Rigling D, Prospero S (2013) A new multilocus approach for a reliable DNA-based identification of Armillaria species. Mycologia 105:1059–1076. https://doi.org/10.3852/12-209
Tsykun T, Rellstab C, Dutech C et al (2017) Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes. Heredity 119:371–380. https://doi.org/10.1038/hdy.2017.48
Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596
Unterseher M, Reiher A, Finstermeier K et al (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Prog 6:201–212. https://doi.org/10.1007/s11557-007-0541-1
Uricaru R, Rizk G, Lacroix V et al (2015) Reference-free detection of isolated SNPs. Nucleic Acids Res 43:e11. https://doi.org/10.1093/nar/gku1187
Verdu CF, Guichoux E, Quevauvillers S et al (2016) Dealing with paralogy in RADseq data: in silico detection and single nucleotide polymorphism validation in Robinia pseudoacacia L. Ecol Evol 6:7323–7333. https://doi.org/10.1002/ece3.2466
Wingfield MJ, Slippers B, Wingfield BD, Barnes I (2017) The unified framework for biological invasions: a forest fungal pathogen perspective. Biol Invasions 19:3201–3214. https://doi.org/10.1007/s10530-017-1450-0
Acknowledgments
We thank Olivier Fabreguettes, Gilles Saint-Jean, and Martine Martin-Clotté for their help in the laboratory, especially for Erysiphe alphitoides sub-cultures, and DNA extraction; Nacer Mohellibi for helping in the genome browser; and Françoise Alfama-Depauw for blast banks, using the facilities of the URGI platform (https://urgi.versailles.inra.fr/). MassArray, Access, and Ion Torrent experiments were performed at the Genome Transcriptome Facility of Bordeaux (Grants from Investissements d’Avenir, Convention attributive d’aide EquipEx Xyloforest ANR-10-EQPX-16-01), with the help of Christophe Boury. Illumina sequencing was performed in collaboration with the GeT core facility, Toulouse, France (http://get.genotoul.fr) and the help of Céline Jeziorski, and was supported by France Génomique National infrastructure, funded as part of “Investissement d’avenir” program managed by Agence SNPs from an Erysiphe alphitoides draft genome - 8Nationale pour la Recherche (contract ANR-10-INBS-09). Andrin Gross benefited from the IdEx Bordeaux post-doctoral fellowship program. This work was also supported by the ANR-12-ADAP-0009 (Gandalf project), and an innovative project INRA department EFPA. Part of the sampling was issued from a European BiodivERsA project (RESIPATH: Responses of European Forests and Society to Invasive Pathogens – BIODIVERSA/0002/2012) with a national grant ANR-13-EBID-0005-01. We are also grateful to the Genotoul bioinformatics platform Toulouse Midi-Pyrénées (Bioinfo Genotoul) for providing computing and storage resources. We finally thank colleagues from RESIPATH and the herbaria curators D. Triebel (Bot. Staatssammlungen Munich, Germany), C. Lange (Natural history museum of Denmark), A. D. Bond (Royal Botanical Gardens Fungarium, UK), R. Berndt (Fungarium Z + ZT, Switzerland), V. Queloz and V. Dubach (forest protection service herbarium, WSL, Switzerland), and Nathalie Séjalon-Delmas et Paul Seimandi (Paul Sabatier Toulouse university, France) for Erysiphe sp. samples used in the genotyping test.
Author information
Authors and Affiliations
Corresponding author
Additional information
Section Editor: Marco Thines
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dutech, C., Feau, N., Lesur, I. et al. An easy and robust method for isolation and validation of single-nucleotide polymorphic markers from a first Erysiphe alphitoides draft genome. Mycol Progress 19, 615–628 (2020). https://doi.org/10.1007/s11557-020-01580-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11557-020-01580-w

