Mycological Progress

, Volume 18, Issue 8, pp 983–1003 | Cite as

Spider-pathogenic fungi within Hypocreales (Ascomycota): their current nomenclature, diversity, and distribution

  • Bhushan ShresthaEmail author
  • Alena Kubátová
  • Eiji Tanaka
  • Junsang Oh
  • Deok-Hyo Yoon
  • Jae-Mo Sung
  • Gi-Ho SungEmail author


Spider-pathogenic fungi are widely distributed in the world. Our review shows at least eighty six spider- and harvestman-pathogenic fungi that are currently accommodated in genera Akanthomyces Lebert, Beauveria Vuill., Clonostachys Corda, Cordyceps Fr., Engyodontium de Hoog, Gibellula Cavara, Hevansia Luangsa-ard et al., Hirsutella Pat., Hymenostilbe Petch, Lecanicillium W. Gams & Zare, Ophiocordyceps Petch, Purpureocillium Luangsa-ard et al., and Torrubiella Boud. within Hypocreales. Akanthomyces neoaraneogenum (W.H. Chen, Y.F. Han, J.D. Liang, Z.Q. Liang & D.C. Jin) W.H. Chen, Y.F. Han & Z.Q. Liang, comb. nov. is also proposed here. Among the genera, Gibellula, Hevansia, Torrubiella, and Akanthomyces are exclusively or dominantly spider pathogens. Gibellula pulchra, G. leiopus, P. atypicola, A. aranearum, and T. aranicida are some of the cosmopolitan spider-pathogenic fungi. A total of twenty spider families and two harvestman families are known to be parasitized by hypocrealean fungi. Spider-pathogenic fungi are known from diverse areas of Europe, and Central and South America, but are only known from limited parts in Asia and Africa. However, east and southeast Asia shows the highest richness of spider-pathogenic fungi. Among three entomogenous families within Hypocreales, we show that the majority of the spider pathogens are distributed in Cordycipitaceae while a few in Ophiocordycipitaceae, but none in the family Clavicipitaceae. Through this review, we show that spiders constitute one of the major host groups of arthropod-associated fungi and hope a continuous interest will be generated to utilize such fungal resources through in vitro growth and extraction of useful bio-active secondary metabolites (extrolites).


Arachnids Araneogenous fungi Arthropod-pathogenic fungi Fungal resource New combination 



Biodiversity Heritage Library is kindly acknowledged for reuse of Figs. 1 and 6 (left) (contributed by University Library, University of Illinois, Urbana Champaign), Figs. 3, 9, and 10 (contributed by New York Botanical Garden, LuEsther T. Mertz Library), Fig. 4 (contributed by Smithsonian Libraries), Fig. 5 (left) (contributed by NCSU Libraries), Fig. 6 (right) (contributed by MBLWHOI Library), and Figs. 7 and 8 (left) (contributed by Missouri Botanical Garden, Peter H. Raven Library) with due acknowledgement to the contributing institutes. David Minter (Cyberliber) (Fig. 2), Journal of Japanese Botany (Fig. 5, right) and Nerthus and DigiZeitschriften (Fig. 8, right) are also kindly acknowledged for permission to use the figures. Two anonymous reviewers are kindly thanked for insightful comments and suggestions.


This research was supported by the Bio-industry Technology Development Program (316025-05) of IPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries) of Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.


  1. Araújo JPM, Hughes DP (2016) Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet 94:1–39. Google Scholar
  2. Aung OM, Kang JC, Liang ZQ et al (2006) Cordyceps mrciensis sp. nov. from a spider in Thailand. Mycotaxon 97:235–240Google Scholar
  3. Bałazy S (1970) Gibellula leiopus (Vuillemin in Maublanc) Mains - the fungus pathogenic for spiders. Acta Mycol 6:71–76. Google Scholar
  4. Bałazy S (2004) Znaczenie obszarów chronionych dla zachowania zasobów grzybów entomopatogenicznych. KOSMOS 53:5–16Google Scholar
  5. Barbosa BC, Maciel TT, Abegg AD et al (2016) Arachnids infected by arthropod-pathogenic fungi in an urban fragment of Atlantic forest in southern Brazil. Nat Online 14:11–14Google Scholar
  6. Berkeley MJ (1869) On a collection of fungi from Cuba. Part II J Linn Soc - Bot 10:341–392. Google Scholar
  7. Bosselaers JP (1984) Gibellula pulchra (Sacc.) Cavara in het gebied van de Slangebeekbron te Zonhoven (België). Nat Maandbl 73:166–168Google Scholar
  8. Boudier E (1885) Note sur un nouveau genre et quelques nouvelles especes des Pyrenomycetes. Rev Mycol 7:224–227Google Scholar
  9. Boudier E (1887) Notice sur deux mucédinées nouvelles, l’Isaria cuneispora ou état conidial du Torrubiella aranicida Boud. et le Stilbum viridipes. Rev Mycol 9:157–159Google Scholar
  10. Boudier E (1905–1910) Icones mycologicae ou iconographie des champignons de France. Vol. 3 P. Klincksieck, L. Lhomme, successeur, ParisGoogle Scholar
  11. Catania MV, Sanjuan TI, Robledo GL (2018) South American Cordyceps s. l. (Hypocreales, Ascomycota): first assessment of species diversity in Argentina. Nov Hedwig 106:261–281. Google Scholar
  12. Cavara F (1894) Ulteriore contribuzione alla Micologia Lombarda. Atti Ist Bot Univ Pavia Ser II 3:313–350Google Scholar
  13. Chandler D, Davidson G, Pell JK et al (2000) Fungal biocontrol of acari. Biocontrol Sci Tech 10:357–384. Google Scholar
  14. Chen WH, Han YF, Liang ZQ et al (2014) Classification of Gibellula spp. by DELTA system. Microbiology China 41:399–407. Google Scholar
  15. Chen WH, Han YF, Liang JD et al (2016a) A new araneogenous fungus of the genus Clonostachys. Mycosystema 35:1061–1069. Google Scholar
  16. Chen WH, Han YF, Liang ZQ et al (2016b) Morphological traits, DELTA system, and molecular analysis for Gibellula clavispora sp. nov. from China. Mycotaxon 131:111–121. Google Scholar
  17. Chen WH, Han YF, Liang ZQ et al (2017a) A new araneogenous fungus in the genus Beauveria from Guizhou, China. Phytotaxa 302:57–64. Google Scholar
  18. Chen WH, Han YF, Liang ZQ et al (2017b) Lecanicillium araneogenum sp. nov., a new araneogenous fungus. Phytotaxa 305:29–34. Google Scholar
  19. Chen WH, Liu C, Han YF et al (2018) Akanthomyces araneogenum, a new Isaria-like araneogenous species. Phytotaxa 379:66–72. Google Scholar
  20. Chiriví J, Danies G, Sierra R et al (2017) Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae): a new source of active compounds. PLoS One 12:e0179428. Google Scholar
  21. Coddington JA, Colwell RK (2001) Arachnids. In: Levin SA (ed) Encyclopedia of Biodiversity, 1st edn. Vol 1. Elsevier Inc, pp 199–218Google Scholar
  22. Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592. Google Scholar
  23. Cokendolpher JC (1993) Pathogens and parasites of Opiliones (Arthropoda: Arachnida). J Arachnol 21:120–146Google Scholar
  24. Cooke MC (1892) Vegetable wasps and plant worms. Society for Promoting Christian Knowledge, LondonGoogle Scholar
  25. Costa PP (2014) Gibellula spp. associadas a aranhas da Mata do Paraíso, Viçosa-MG (M.Sc.). Minas Gerais, Brazil: Universidade Federal de ViçosaGoogle Scholar
  26. Coyle FA, Goloboff PA, Samson RA (1990) Actinopus trapdoor spiders (Araneae: Actinopodidae) killed by the fungus Nomuraea atypicola (Deuteromycotina). Acta Zool Fenn 190:89–93Google Scholar
  27. Dingley JM (1953) Hypocreales of New Zealand 5. Genera Cordyceps and Torrubiella. Trans R Soc N Z 81:329–343Google Scholar
  28. Ditmar LPF (1817) Deutschlands flora in abbildungen nach der natur von Jacob Sturm, Part 3. Die Pilze Deutschlands, Vol 1. NurnbergGoogle Scholar
  29. Doi Y (1977) Two species of Torrubiella and their conidial states. Bol Soc Argent Bot 18:110–114Google Scholar
  30. Evans HC (1982) Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecol Entomol 7:47–60. Google Scholar
  31. Evans HC (2013) Fungal pathogens of spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, Heidelberg, pp 107–121Google Scholar
  32. Evans HC, Samson RA (1982a) Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems. I. The Cephalotes (Myrmicinae) complex. Trans Br Mycol Soc 79:431–453. Google Scholar
  33. Evans HC, Samson RA (1982b) Entomogenous fungi from the Galápagos Islands. Can J Bot 60:2325–2333. Google Scholar
  34. Evans HC, Samson RA (1984) Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems. II. The Camponotus (Formicinae) complex. Trans Br Mycol Soc 82:127–150. Google Scholar
  35. Evans HC, Samson RA (1987) Fungal pathogens of spiders. Mycologists 1:152–159. Google Scholar
  36. Evans RE (1967) Some entomogenous fungi. Proc Birm Nat Hist Soc 21:33–36Google Scholar
  37. Fassatiová O (1960) Několik poznámek k novým nálezům některých imperfektních druhů ze skupiny Hyphomycetes. Česká Mykologie 14:193–197Google Scholar
  38. Gams W, de Hoog GS, Samson RA et al (1984) The hyphomycete genus Engyodontium: a link between Verticillium and Aphanocladium. Persoonia 12:135–147Google Scholar
  39. Gao RX (1981) Description of a parasitic fungus Gibellula suffulta on spiders in Fujian. Acta Microbiol Sin 21:308–310Google Scholar
  40. Gillespie RG, Spagna JC (2009) Spiders. In: Resh VH, Cardé RT (eds) Encyclopedia of insects, 2nd edn. Elsevier Inc, pp 941–951Google Scholar
  41. Gray GR (1858) Notices of insects that are known to form the bases of fungoid parasites. British Museum, LondonGoogle Scholar
  42. Greenstone MH, Ignoffo CM, Samson RA (1987) Susceptibility of spider species to the fungus Nomuraea atypicola. J Arachnol 15:266–268Google Scholar
  43. Han YF, Chen WH, Zou X et al (2013) Gibellula curvispora, a new species of Gibellula. Mycosystema 32:777–780Google Scholar
  44. Hennings PC (1897) Fungi Camerunenses II. Engler’s Bot Jahrb Syst, Pflanzengesch Pflanzengeogr hrsg 23:537–558Google Scholar
  45. Hennings PC (1904) Ueber Cordiceps=Arten. Nerthus, Hamburg-Altona 6:1–4Google Scholar
  46. Hsieh LS, Tzean SS, Wu WJ (1997) The genus Akanthomyces on spiders from Taiwan. Mycologia 89:319–324Google Scholar
  47. Huang B, Ding DG, Fan MZ et al (1998a) A new entomopathogenic fungus on spiders. Mycosystema 17:109–113Google Scholar
  48. Huang B, Fan MZ, Li ZZ (1998b) A new species of Hymenostilbe. Mycosystema 17:193–194Google Scholar
  49. Huang B, Wang CS, Wang WM et al (1998c) Two newly recorded species of spider-pathogenic fungi. Mycosystema 17:374–375Google Scholar
  50. Huang B, Wang S, Fan MZ et al (2000) Two species of Akanthomyces from Dabieshan mountains. Mycosystema 19:172–174Google Scholar
  51. Hughes DP, Araújo J, Loreto R et al (2016) From so simple a beginning: the evolution of behavioral manipulation by fungi. Adv Genet 94:437–469. Google Scholar
  52. Humber RA, Rombach MC (1987) Torrubiella ratticaudata sp. nov. (Pyrenomycetes: Clavicipitales) and other fungi from spiders on the Solomon Islands. Mycologia 79:375–382. Google Scholar
  53. Humenik M, Scheibel T, Smith A (2011) Spider silk: understanding the structure–function relationship of a natural fiber. Prog Mol Biol Transl Sci 103:131–185. Google Scholar
  54. Hywel-Jones NL (1996) Akanthomyces on spiders in Thailand. Mycol Res 100:1065–1070. Google Scholar
  55. Hywel-Jones NL, Sivichai S (1995) Cordyceps cylindrica and its association with Nomuraea atypicola in Thailand. Mycol Res 99:809–812. Google Scholar
  56. Imoulan A, Wu HJ, Lu WL et al (2016) Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China. J Invertebr Pathol 139:74–81. Google Scholar
  57. Johnson D, Sung GH, Hywel-Jones NL et al (2009) Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota). Mycol Res 113:279–289. Google Scholar
  58. Johnston JR (1915) The entomogenous fungi of Porto Rico. Insular Experiment Station, Government of Porto Rico Board of Commissioners of Agriculture, Río Piedras. Bull No. 10Google Scholar
  59. Johnston JR (1918) Algunos hongos entomogenos de Cuba, South America. Mem Soc Cuba Hist Nat ‘Felipe Poey’ 3:61–82Google Scholar
  60. Kautman V, Kautmanova I (2009) Cordyceps s.l. (Ascomycetes, Clavicipitaceae) in Slovakia. Catathelasma 11:5–48Google Scholar
  61. Kepler RM, Luangsa-ard JJ, Hywel-Jones NL et al (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8:335–353. Google Scholar
  62. Kobayasi Y (1941) The genus Cordyceps and its allies. Sci Rep Tokyo Bunrika Daigaku Sect B 84(5):53–260Google Scholar
  63. Kobayasi Y (1977) Miscellaneous notes on the genus Cordyceps and its allies (2). J Jpn Bot 52:65–71Google Scholar
  64. Kobayasi Y, Shimizu D (1976) The genus Cordyceps and its allies from New Guinea. Bull Natl Sci Mus, Tokyo, Ser B 2:133–152Google Scholar
  65. Kobayasi Y, Shimizu D (1977) Some species of Cordyceps and its allies on spiders. Kew Bull 31:557–566. Google Scholar
  66. Kobayasi Y, Shimizu D (1981) The genus Cordyceps and its allies from Taiwan (Formosa). Bull Natl Sci Mus, Tokyo, Ser B 7:113–122Google Scholar
  67. Kobayasi Y, Shimizu D (1982a) Cordyceps species from Japan 4. Bull Natl Sci Mus, Tokyo, Ser B 8:79–91Google Scholar
  68. Kobayasi Y, Shimizu D (1982b) Monograph of the genus Torrubiella. Bull Natl Sci Mus, Tokyo, Ser B 8:43–78Google Scholar
  69. Koval EZ (1963) Entomofilnye griby iz klassa Deuteromycetes juga primorja. Bot Mater Otd Sporov Rast 16:104–108Google Scholar
  70. Koval EZ (1967) Species novae fungorum imperfectorum entomophilorum e regione primorskensi. Nov Sist Nizs Rast 4:199–203Google Scholar
  71. Koval EZ (1974) Opredelitel Entomofilnych Gribov SSSR. Naukova Dumka, KievGoogle Scholar
  72. Koval EZ (1976) Species novae fungorum entomophilorum hyphomycetalum. Nov Sist vyss Nizs Rast 13:203–208Google Scholar
  73. Koval EZ (1984) Klavicipitalnye griby SSSR. Naukova Dumka, KievGoogle Scholar
  74. Kubátová A (2004) The arachnogenous fungus Gibellula leiopus – second find from the Czech Republic. Czech Mycol 56:185–191Google Scholar
  75. Kubátová A (2017) Entomopatogenní houby – nerovný souboj. Ziva 5:250–254Google Scholar
  76. Kuephadungphan W, Macabeo APG, Luangsa-ard JJ et al (2019) Studies on the biologically active secondary metabolites of the new spider parasitic fungus Gibellula gamsii. Mycol Prog 18:135–146. Google Scholar
  77. Leatherdale D (1970) The arthropod hosts of entomogenous fungi in Britain. Entomophaga 15:419–435Google Scholar
  78. Lebert H (1858) Ueber einige neue oder unvollkommen gekannte Krankheiten der Insekten, welche durch Entwicklung niederer Pflanzen im lebenden Körper enstehen. Z Wiss Zool 9:439–453Google Scholar
  79. Li CR, Chen AH, Wang M et al (2005) Cordyceps cylindrica and its anamorph Nomuraea atypicola. Mycosystema 24:14–18Google Scholar
  80. Lindau G (1910) Rabenhorst’s Kryptogamen-Flora, 2nd edn. Vol 1. Die Pilze Deutschlands, Oesterreichs und der Schweiz. Part 9 Fungi imperfecti: Hyphomycetes. E Kummer, LeipzigGoogle Scholar
  81. López A, García J (2011) Gibellula clavulifera var major Funga Veracruz No:124Google Scholar
  82. Lovett B, St. Leger RJ (2017) The insect pathogens. Microbiol Spectr 5:1–19. Google Scholar
  83. Luangsa-ard J, Houbraken J, van Doorn T et al (2011) Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett 321:141–149.
  84. Luangsa-ard JJ, Tasanathai K, Mongkolsamrit S et al (2010) Atlas of invertebrate-pathogenic fungi of Thailand, vol 3. National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, PathumthaniGoogle Scholar
  85. Luangsa-ard JJ, Tasanathai K, Mongkolsamrit S et al (2012) Atlas of invertebrate-pathogenic fungi of Thailand, vol 4. National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, PathumthaniGoogle Scholar
  86. Mains EB (1939) Cordyceps from the mountains of North Carolina and Tennessee. J Elisha Mitchell Sci Soc 55:117–129 Google Scholar
  87. Mains EB (1949) New species of Torrubiella, Hirsutella and Gibellula. Mycologia 41:303–310. Google Scholar
  88. Mains EB (1950a) Entomogenous species of Akanthomyces, Hymenostilbe and Insecticola in North America. Mycologia 42:566–589. Google Scholar
  89. Mains EB (1950b) The genus Gibellula on spiders in North America. Mycologia 42:306–321. Google Scholar
  90. Mains EB (1954) Species of Cordyceps on spiders. Bull Torrey Bot Club 81:492–500. Google Scholar
  91. Mains EB (1955) Some entomogenous species of Isaria. Papers Mich Acad Sci 40:23–32Google Scholar
  92. Mains EB (1958) North American entomogenous species of Cordyceps. Mycologia 50:169–222. Google Scholar
  93. Manfrino RG, González A, Barnechea J et al (2017) Contribution to the knowledge of pathogenic fungi of spiders in Argentina: southernmost record in the world. Rev Argent Microbiol 49:197–200. Google Scholar
  94. Massee G (1895) A revision of the genus Cordyceps. Ann Bot 9:1–44Google Scholar
  95. Maublanc MA (1920) Contribuition à l’étude de la flore mycologique brésilienne. Bull Soc Mycol Fr 36:33–43Google Scholar
  96. McCoy CW, Samson RA, Boucias DG (1988) Entomogenous fungi. In: Ignoffo CM (ed) CRC handbook of natural pesticides, Vol 5 (Part A). Entomogenous Protozoa and Fungi. CRC Press, Boca Raton, pp 151–236Google Scholar
  97. McNeil D (2012) Entomogenous fungi. Shropsh Entomol 5:5–6Google Scholar
  98. Möller A (1901) Botanische Mittheilungen aus den Tropen von Schimper AFW, Heft 9. Phycomyceten und Ascomyceten, untersuchungen aus Brasilien. Fischer, JenaGoogle Scholar
  99. Mongkolsamrit S, Noisripoom W, Thanakitpipattana D et al (2018) Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. Mycologia 110:230–257Google Scholar
  100. Montagne C (1842) (1838-1842). Histoire physique, politique et naturelle de l'ile de Cuba par Ramon de la Sagra. Botanique - Plantes Cellulaires. A. Bertrand, ParisGoogle Scholar
  101. Mora MAE, Castilho AMC, Fraga ME (2017) Classification and infection mechanism of entomopathogenic fungi. Arq Inst Biol 84:1–10. Google Scholar
  102. Nentwig W (1985) Parasitic fungi as a mortality factor of spiders. J Arachnol 13:272–274Google Scholar
  103. O'Donnell KL, Common RS, Imshaug HA (1977) A new species of Torrubiella on a spider from the Falkland Islands. Mycologia 69:618–622. Google Scholar
  104. Okuzawa Y (2012) Cultural history of vegetable wasps and plant worms. Ishida TaiseishaGoogle Scholar
  105. Peng F, Chen MJ, Huang B (2008) A new record of Hymenostilbe in China. Mycosystema 27:452–454Google Scholar
  106. Petch T (1923) The genus Cladosterigma pat. Trans Br Mycol Soc 8:212–215. Google Scholar
  107. Petch T (1931) Isaria arachnophila Ditmar. The Naturalist 56:247–250Google Scholar
  108. Petch T (1932a) A list of the entomogenous fungi of Great Britain. Trans Br Mycol Soc 17:170–178. Google Scholar
  109. Petch T (1932b) Gibellula. Ann Mycol 30:386–393Google Scholar
  110. Petch T (1932c) Notes on entomogenous fungi. Trans Br Mycol Soc 16:209–245. Google Scholar
  111. Petch T (1933) Notes on entomogenous fungi. Trans Br Mycol Soc 18:48–75. Google Scholar
  112. Petch T (1934) Isaria. Trans Br Mycol Soc 19:34–38. Google Scholar
  113. Petch T (1935) Notes on entomogenous fungi. Trans Br Mycol Soc 19:161–194. Google Scholar
  114. Petch T (1937) Notes on entomogenous fungi. Trans Br Mycol Soc 21:34–67. Google Scholar
  115. Petch T (1939) Notes on entomogenous fungi. Trans Br Mycol Soc 23:127–148. Google Scholar
  116. Petch T (1944) Notes on entomogenous fungi. Trans Br Mycol Soc 27:81–93. Google Scholar
  117. Petch T (1948) A revised list of British entomogenous fungi. Trans Br Mycol Soc 31:286–304. Google Scholar
  118. Qiu F, Qi Z, Li CR et al (2012) The genus Cordyceps and its allies from Anhui II. J Anhui Agric Univ 39:803–806Google Scholar
  119. Roberts DW, Humber RA (1981) Entomogenous fungi. In: Cole GT, Kendrick B (eds) Biology of conidial fungi, vol 2. Academic Press, New York, pp 201–236Google Scholar
  120. Rong IH, Botha A (1993) New and interesting records of South African fungi XII. Synnematous Hyphomycetes. S Afr J Bot 59:514–518Google Scholar
  121. Rong IH, Grobbelaar E (1998) South African records of associations between fungi and arthropods. Afr Plant Prot 4:43–63Google Scholar
  122. Saccardo PA (1877) Fungi Italici. Michelia 1:73–100Google Scholar
  123. Saccardo PA (1886) Sylloge Fungorum, Vol. 4. PataviiGoogle Scholar
  124. Samson RA (1974) Paecilomyces and some allied hyphomycetes. Stud Mycol 6:1–119Google Scholar
  125. Samson RA, Brady BL (1982) Akanthomyces novoguineensis sp. nov. Trans Br Mycol Soc 79:571–572. Google Scholar
  126. Samson RA, Evans HC (1973) Notes on entomogenous fungi from Ghana. 1 The genera Gibellula and Pseudogibellula. Acta Bot Neerl 22:522–528Google Scholar
  127. Samson RA, Evans HC (1974) Notes on entomogenous fungi from Ghana. II. The genus Akanthomyces. Acta Bot Neerl 23:28–35Google Scholar
  128. Samson RA, Evans HC (1975) Notes on entomogenous fungi from Ghana. III. The genus Hymenostilbe. Proc K Ned Akad Wet. Ser C 78:73–80Google Scholar
  129. Samson RA, Evans HC (1977) Notes on entomogenous fungi from Ghana. IV. The genera Paecilomyces and Nomuraea. Proc K Ned Akad Wet. Ser C 80:128–134Google Scholar
  130. Samson RA, Evans HC (1982) Clathroconium, a new helicosporous hyphomycete genus from spiders. Can J Bot 60:1577–1580. Google Scholar
  131. Samson RA, Evans HC (1992) New species of Gibellula on spiders (Araneidae) from South America. Mycologia 84:300–314. Google Scholar
  132. Sánchez-Peña SR (1990) Some insect and spider pathogenic fungi from Mexico with data on their host ranges. Fla Entomol 73:517–522. Google Scholar
  133. Santamaria S, Girbal J (1996) Gibellula pulchra (Saccardo) Cavara, un fong patogen d’aranyes, a Catalunya. Orsis 11:179–181Google Scholar
  134. Sato H, Ban S, Masuya H et al (2010) Reassessment of type specimens of Cordyceps and its allies described by Dr. Yosio Kobayasi preserved in the mycological herbarium of the National Museum of Nature and Science (TNS). Part 1: the genus Torrubiella. Mycoscience 51:154–161. Google Scholar
  135. Savić D, Grbić G, Bošković E et al (2016) First records of fungi pathogenic on spiders for the Republic of Serbia. Arachnol Lett 52:31–34Google Scholar
  136. Sawada K (1914) Some remarkable parasitic fungi on insects found in Japan. Bot Mag 28:307–314Google Scholar
  137. Sawada K (1919) Descriptive catalogue of the Formosan fungi, Part I. Special Bulletin No. 19. Agricultural Experiment Station, Taihoku, Formosa, JapanGoogle Scholar
  138. Sawada K (1928) Descriptive catalogue of the Formosan fungi, Part IV. Report No. 35. The Institute Taihoku, FormosaGoogle Scholar
  139. Sawada K (1959) Descriptive catalogue of Taiwan (Formosan) fungi. College of Agriculture, National Taiwan University, Taiwan, China, Part XIGoogle Scholar
  140. Shultz JW, Pinto-da-Rocha R (2007) Morphology and functional anatomy. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, pp 14–61Google Scholar
  141. Schweinitz de LD (1822) Synopsis fungorum Carolinae superioris: secundum observationes. Schriften der naturforschenden Gesellschaft zu LeipzigGoogle Scholar
  142. Seaver FJ (1910) Cordyceps (Hypocreales). N Am Flora 3:1–56Google Scholar
  143. Selçuk F, Huseyin E, Gaffaroglu M (2004) Occurrence of the araneogenous fungus Gibellula pulchra in Turkey. Mycol Balc 1:61–62Google Scholar
  144. Shang Y, Feng P, Wang C (2015) Fungi that infect insects: altering host behavior and beyond. PLoS Pathog 11:e1005037. Google Scholar
  145. Shang Y, Xiao G, Zheng P et al (2016) Divergent and convergent evolution of fungal pathogenicity. Genome Biol Evol 8:1374–1387. Google Scholar
  146. Shrestha B, Hyun MW, Oh J et al (2014a) Molecular evidence of a teleomorph-anamorph connection between Cordyceps scarabaeicola and Beauveria sungii and its implication for the systematics of Cordyceps sensu stricto. Mycoscience 55:231–239. Google Scholar
  147. Shrestha B, Tanaka E, Han JG et al (2014b) A brief chronicle of the genus Cordyceps Fr., the oldest valid genus in Cordycipitaceae (Hypocreales, Ascomycota). Mycobiology 42:93–99. Google Scholar
  148. Shrestha B, Tanaka E, Hyun MW et al (2016) Coleopteran and lepidopteran hosts of the entomopathogenic genus Cordyceps sensu lato. J Mycol 2016, article ID 7648219.
  149. Shrestha B, Sung GH, Sung JM (2017a) Current nomenclatural changes in Cordyceps sensu lato and its multidisciplinary impacts. Mycology 8:293–302. Google Scholar
  150. Shrestha B, Tanaka E, Hyun MW et al (2017b) Mycosphere essay 19. Cordyceps species parasitizing hymenopteran and hemipteran insects. Mycosphere 8:1424–1442. Google Scholar
  151. Spatafora JW, Quandt CA, Kepler RM et al (2015) New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus 6:357–362. Google Scholar
  152. Spatafora JW, Sung GH, Sung JM et al (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711. Google Scholar
  153. Speare AT (1912) Notes on Hawaiian fungi. I Gibellula suffulta n sp on spider. Phytopathology 2:135–137Google Scholar
  154. Spegazzini C (1882) Fungi Argentini. An Soc Cient Argent 13(11–35):60–64Google Scholar
  155. Strongman DB (1991) Gibellula pulchra from a spider (Salticidae) in Nova Scotia, Canada. Mycologia 83:816–817. Google Scholar
  156. Sukarno N, Kurihara Y, Ilyas M et al (2009) Lecanicillium and Verticilium species from Indonesia and Japan including three new species. Mycoscience 50:369–379. Google Scholar
  157. Sun JZ, Hyde KD, Liu XZ et al (2017) Calcarisporium xylariicola sp. nov. and introduction of Calcarisporiaceae fam. nov. in Hypocreales. Mycol Prog 16:433–445. Google Scholar
  158. Sung GH, Hywel-Jones NL, Sung JM et al (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59. Google Scholar
  159. Sung JM (1996) The insect-borne fungus of Korea in color. Kyohak Publishing Co., SeoulGoogle Scholar
  160. Sydow H (1922) Fungi novo-guineenses. Engler’s Bot Jahrb Syst, Pflanzengesch Pflanzengeogr hrsg 57:321–325Google Scholar
  161. Teng SC (1936) Additional fungi from China III. Sinensia 7:529–569Google Scholar
  162. Tkaczuk C, Balazy S, Krzyczkowski T et al (2011) Extended studies on the diversity of arthropod-pathogenic fungi in Austria and Poland. Acta Mycol 46:211–222Google Scholar
  163. Toledo AV, de Remes Lenicov AMM, López Lastra CC (2008) Host range findings on Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales) in Argentina. Bol Soc Argent Bot 43:211–220Google Scholar
  164. Tzean SS, Hsieh LS, Wu WJ (1997a) Atlas of entomopathogenic fungi from Taiwan. Council of Agriculture, TaipeiGoogle Scholar
  165. Tzean SS, Hsieh LS, Wu WJ (1997b) The genus Gibellula on spiders from Taiwan. Mycologia 89:309–318Google Scholar
  166. Tzean SS, Hsieh LS, Wu WJ (1998) Torrubiella dimorpha, a new species of spider parasite from Taiwan. Mycol Res 102:1350–1354. Google Scholar
  167. Van der Byl PA (1922) A fungus – Gibellula haygarthii, sp. n. - on a spider of the family Lycosidae. Trans R Soc S Afr 10:149–150Google Scholar
  168. Vega FE, Meyling NV, Luangsa-ard JJ et al (2012) Fungal entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, San Diego, pp 172–220Google Scholar
  169. World Spider Catalog (2019) Natural History Museum Bern, version 15.5. Accessed 17 May 2019
  170. Yakushiji E, Kumazawa M (1930) Über einige im Koishikawa botanischen Garten gesammelte Isaria-Arten I. Bot Mag 44:40–42Google Scholar
  171. Yasuda A (1894) Tsuchi gumo ni kisei suru tōchūkasō ni tsuite. Bot Mag 8:337–340,373Google Scholar
  172. Yasuda A (1915) Purseweb spider parasitized by an Isaria fungus. Bot Mag 29:117Google Scholar
  173. Yasuda A (1917) Eine neue Art von Isaria. Bot Mag 31:208–209Google Scholar
  174. Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. Nov. Nov Hed 73:1–50Google Scholar
  175. Zhou YM, Zhi JR, Ye M et al (2018) Lecanicillium cauligalbarum sp. nov. (Cordycipitaceae, Hypocreales), a novel fungus isolated from a stemborer in the Yao Ren National Forest Mountain Park, Guizhou. MycoKeys 43:59–74. Google Scholar
  176. Zou X, Chen WH, Han YF et al (2016) A new species of the genus Gibellula. Mycosystema 35:1161–1168. Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary’s Hospital and College of MedicineCatholic Kwandong UniversityIncheonRepublic of Korea
  2. 2.Department of Botany, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  3. 3.Environmental ScienceIshikawa Prefectural UniversityNonoichiJapan
  4. 4.Mushtech Cordyceps InstituteHoengseong-gunRepublic of Korea
  5. 5.Department of Microbiology, College of MedicineCatholic Kwandong UniversityGangneungRepublic of Korea

Personalised recommendations