Advertisement

Mycological Progress

, Volume 18, Issue 7, pp 973–981 | Cite as

Annabella australiensis gen. & sp. nov. (Helotiales, Cordieritidaceae) from South Australian mangroves

  • Sally C. FryarEmail author
  • Danny Haelewaters
  • David E. A. Catcheside
Original Article

Abstract

A new genus of helotialean fungi, Annabella gen. nov. (Cordieritidaceae), is described to accommodate Annabella australiensis sp. nov. This species was collected on attached decaying wood of Avicennia marina, a common mangrove species found in protected waters of southern Australia. Annabella is distinctive among Cordieritidaceae in having relatively small perithecioid hyaline to yellowish apothecia and by the absence of an ionomidotic reaction. The apothecial shape and size of Annabella is most similar to Skyttea. The molecular phylogenetic analysis of a concatenated dataset of three ribosomal nuclear loci confirms the placement of Annabella within Cordieritidaceae, as a sister clade to Skyttea.

Keywords

Ascomycota Australia Marine fungi New taxa Taxonomy 

Notes

Acknowledgments

We would like to thank Gerry Cawson, Toby Cawson, and Ben Cawson for assistance with field collections.

References

  1. Bebout B, Schatz S, Kohlmeyer J, Haibach M (1987) Temperature-dependent growth in isolates of Corollospora maritima Werderm. (Ascomycetes) from different geographical regions. J Exp Mar Biol Ecol 106:203–210.  https://doi.org/10.1016/0022-0981(87)90093-1 CrossRefGoogle Scholar
  2. Boyd P, Kohlmeyer J (1982) The influence of temperature on the seasonal and geographic distribution of three marine fungi. Mycologia 74:894–902.  https://doi.org/10.2307/3792718 CrossRefGoogle Scholar
  3. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973.  https://doi.org/10.1093/bioinformatics/btp348 CrossRefGoogle Scholar
  4. Chernomor O, Von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol 65:997–1008.  https://doi.org/10.1093/sysbio/syw037 CrossRefGoogle Scholar
  5. Cicatiello P, Gravagnuolo AM, Gnavi G, Varese GC, Giardina P (2016) Marine fungi as source of new hydrophobins. Int J Biol Macromol 92:1229–1233.  https://doi.org/10.1016/j.ijbiomac.2016.08.037 CrossRefGoogle Scholar
  6. Cribb AB, Cribb JW (1955) Marine fungi from Queensland 1. Pap Dept Bot Univ Queensl 3:77–81Google Scholar
  7. Cribb AB, Cribb JW (1956) Marine fungi from Queensland. 2. Pap Dept Bot Univ Queensl 3:97–105Google Scholar
  8. Cribb AB, Cribb JW (1960) Some marine fungi on algae in European herbaria. Pap Dept Bot Univ Queensl 4:45–48Google Scholar
  9. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefGoogle Scholar
  10. Devadatha B, Sarma VV, Wanasinghe DN, Hyde KD, Jones EBG (2017) Introducing the new Indian mangrove species, Vaginatispora microarmatispora (Lophiostomataceae) based on morphology and multigene phylogenetic analysis. Phytotaxa 329:139–149.  https://doi.org/10.11646/phytotaxa.329.2.4 CrossRefGoogle Scholar
  11. Diederich P, Etayo J (2000) A synopsis of the genera Skyttea, Llimoniella and Rhymbocarpus (Lichenicolous Ascomycota, Leotiales). Lichenologist 32:423–485.  https://doi.org/10.1006/lich.2000.0290 CrossRefGoogle Scholar
  12. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973.  https://doi.org/10.1093/molbev/mss075 CrossRefGoogle Scholar
  13. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefGoogle Scholar
  14. Etayo J, Flakus A, Suija A, Kukwa M (2015) Macroskyttea parmotrematis gen. et sp. nov. (Helotiales, Leotiomycetes, Ascomycota), a new lichenicolous fungus from Bolivia. Phytotaxa 224:247–257.  https://doi.org/10.11646/phytotaxa.224.3.3 CrossRefGoogle Scholar
  15. Haelewaters D (2019) Data from "Annabella australiensis gen. & sp. nov. (Helotiales, Cordieritidaceae) from South Australian mangroves".  https://doi.org/10.6084/m9.figshare.c.4414700.v3 Accessed 25 February 2019
  16. Harbison P (2008) Mangroves. In: Shepherd SA, Bryars S, Kirkegaard I, Harbison P, Jennings JT (eds) Natural history of Gulf St. Vincent. Royal Society of South Australia, Inc, Adelaide, pp 95–105Google Scholar
  17. Hawksworth DL (1980) Notes on British lichenicolous fungi: III Notes from the Royal Botanical Garden Edinburgh 38: 165–183Google Scholar
  18. Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522.  https://doi.org/10.1093/molbev/msx281 CrossRefGoogle Scholar
  19. Hyde KD (1992) Julella avicenniae (Borse) comb. nov. (Thelennellaceae) from intertidal mangrove wood and miscellaneous fungi from the North East Coast of Queensland. Mycol Res 96:939–942CrossRefGoogle Scholar
  20. Inderbitzin P, Lim S, Volkmann-Kohlmeyer B, Kohlmeyer J, Berbee M (2004) The phylogenetic position of Spathulospora based on DNA sequences from dried herbarium material. Mycol Res 108:737–748CrossRefGoogle Scholar
  21. Jaklitsch W, Baral HO, Lücking R, Lumbsch HT (2016) Ascomycota. In: Frey W (ed) Engler’s syllabus of plant families, 13th edn. Borntraeger Science Publisher, Stuttgart, Germany, pp 1–322Google Scholar
  22. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72.  https://doi.org/10.1007/s13225-015-0339-4 CrossRefGoogle Scholar
  23. Kohlmeyer J (1971) Fungi from the Sargasso Sea. Mar Biol 8:344–350.  https://doi.org/10.1007/BF00348012 CrossRefGoogle Scholar
  24. Kohlmeyer J (1972) Parasitic Haloguignardia oceanica (Ascomycetes) and hyperparasitic Sphaceloma cecidii sp. nov. (Deuteromycetes) in drift Sargassum in North Carolina. J Elisha Mitch Sci S 88:255–258Google Scholar
  25. Kohlmeyer J (1983) Geography of marine fungi. Aust J Bot, Suppl. Ser. 10:67–76Google Scholar
  26. Kohlmeyer J (1984) Tropical marine fungi. PSZNI Mar Ecol 5:329–378.  https://doi.org/10.1111/j.1439-0485.1984.tb00130.x CrossRefGoogle Scholar
  27. Kohlmeyer J, Kohlmeyer E (1975) Biology and geographical distribution of Spathulospora species. Mycologia 67:629–637.  https://doi.org/10.2307/3758398 CrossRefGoogle Scholar
  28. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic press. In: New York. San Fransisco, LondonGoogle Scholar
  29. Kohlmeyer J, Volkmann-Kohlmeyer B (1990) New species of Koralionastes (Ascomycotina) from the Caribbean and Australia. Can J of Bot 68:1554–1559.  https://doi.org/10.1139/b90-199 CrossRefGoogle Scholar
  30. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  31. Liu Y, Li Y, Lin Q, Zhang Y (2016) Assessment of the pathogenicity of marine Cladosporium spp. towards mangroves. Forest Pathol 47:12322.  https://doi.org/10.1111/efp.12322 CrossRefGoogle Scholar
  32. Liu X, Wu X, Ma YF, Zhang WZ, Hu L, Feng XW, Li XY, Tang XD (2017) Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro. Oncol Rep 37:1793–1803.  https://doi.org/10.3892/or.2017.5366 CrossRefGoogle Scholar
  33. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE) 14 Nov. 2010: 1–8. New Orleans, LouisianaGoogle Scholar
  34. Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefGoogle Scholar
  35. Oliveira ALL d, de FR, Debonsi HM (2012) Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi. Rev Bras Farmacogn 22:906–920.  https://doi.org/10.1590/S0102-695X2012005000083 CrossRefGoogle Scholar
  36. Osorio JA, Wingfield MJ, Roux J (2016) A review of factors associated with decline and death of mangroves, with particular reference to fungal pathogens. S Afr J Bot 103:295–301.  https://doi.org/10.1016/j.sajb.2014.08.010 CrossRefGoogle Scholar
  37. Osorio JA, Crous CJ, de Beer ZW, Wingfield MJ, Roux J (2017) Endophytic Botryosphaeriaceae, including five new species, associated with mangrove trees in South Africa. Fungal Biol 121:361–393.  https://doi.org/10.1016/j.funbio.2016.09.004 CrossRefGoogle Scholar
  38. Pärtel K (2016) Application of ultrastructural and molecular data in the taxonomy of helotialean fungi. Dissertation, University of TartuGoogle Scholar
  39. Pärtel K, Baral H-O, Tamm H, Põldmaa K (2017) Evidence for the polyphyly of Encoelia and Encoelioideae with reconsideration of respective families in Leotiomycetes. Fungal Divers 82:183–219.  https://doi.org/10.1007/s13225-016-0370-0 CrossRefGoogle Scholar
  40. Peterson KR, Pfister DH (2010) Phylogeny of Cyttaria inferred from nuclear and mitochondrial sequence and morphological data. Mycologia 102:1398–1416.  https://doi.org/10.3852/10-046 CrossRefGoogle Scholar
  41. Raghukumar S (2017) Fungi in coastal and oceanic marine ecosystems. Springer, Cham, Switzerland.  https://doi.org/10.1007/978-3-319-54304-8 CrossRefGoogle Scholar
  42. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/ Accessed 22 December 2018
  43. Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634.  https://doi.org/10.1016/S0953-7562(09)80409-7 CrossRefGoogle Scholar
  44. Sandilyan S, Kathiresan K (2012) Mangrove conservation: a global perspective. Biodivers Conserv 21:3523–3542.  https://doi.org/10.1007/s10531-012-0388-x CrossRefGoogle Scholar
  45. Schmit J, Shearer CA (2003) A checklist of mangrove-associated fungi, their geographical distribution and known host plants. Mycotaxon 85:423–477Google Scholar
  46. Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174.  https://doi.org/10.1007/s00572-002-0164-y CrossRefGoogle Scholar
  47. Spooner BM (1987) Helotiales of Australasia: Geoglossaceae, Orbiliaceae, Sclerotiniaceae, Hyaloscyphaceae. Bibliotheca Mycologica. 116, J. Cramer, Berlin, SuttgartGoogle Scholar
  48. Sridhar KR (2012) Decomposition of materials in the sea. In: Jones EBG, Pang K-L (eds) Marine fungi: and fungal-like organisms. De Gruyter. Berlin, Boston, pp 475–500 https://www.degruyter.com/view/product/177990 Google Scholar
  49. Stadler T (2009) On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J Theor Biol 261:58–66.  https://doi.org/10.1016/j.jtbi.2009.07.018 CrossRefGoogle Scholar
  50. Stevens FL (1920) New or noteworthy Puerto Rican fungi. Bot Gaz 70:399–402CrossRefGoogle Scholar
  51. Suija A, Ertz D, Lawrey JD, Diederich P (2015) Multiple origin of the lichenicolous life habit in Helotiales, based on nuclear ribosomal sequences. Fungal Divers 70:55–72.  https://doi.org/10.1007/s13225-014-0287-4 CrossRefGoogle Scholar
  52. Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva PA, Fernández N, Escobar JM, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny PB, Smith ME (2017) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214:913–919.  https://doi.org/10.1093/mmy/myv083 CrossRefGoogle Scholar
  53. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246CrossRefGoogle Scholar
  54. Wang Z, Binder M, Hibbett DS (2005) Life history and systematics of the aquatic discomycete Mitrula (Helotiales, Ascomycota) based on cultural, morphological, and molecular studies. Am J Bot 92:1565–1574.  https://doi.org/10.3732/ajb.92.9.1565 CrossRefGoogle Scholar
  55. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  56. Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q (2015) Antibacterial and antifungal compounds from marine fungi. Mar Drugs 13:3479–3513.  https://doi.org/10.3390/md13063479 CrossRefGoogle Scholar
  57. Zhuang W-Y (1988) Studies on some discomycete genera with an ionomidotic reaction: Ionomidotis, Poloniodiscus, Cordierites, Phyllomyces, and Ameghiniella. Mycotaxon 31:261–298Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Science and EngineeringFlinders UniversityAdelaideAustralia
  2. 2.Department of Botany and Plant PathologyPurdue UniversityWest LafayetteUSA
  3. 3.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations