Skip to main content

Advertisement

Log in

Filamentous fungi associated with Brazilian stone samples: structure of the fungal community, diversity indexes, and ecological analysis

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

A Correction to this article was published on 15 April 2019

This article has been updated

Abstract

The present study aims to explore the diversity patterns of cultivable filamentous fungi and establish the ecological interactions that occur within the mycological community on soapstone in two distinct places: Architectural Complex of Caraça and Congonhas town, in Minas Gerais state, Brazil. A total of 200 isolates of filamentous fungi were detected and 72 distinct taxa were identified using molecular tools. The rock-inhabiting fungal communities were comprised of cosmopolitan taxa, which displayed high diversity and richness, but low dominance indexes at two of the sampling sites over the course of 12 months. The detection of organic acids secreted by the isolated filamentous fungal species revealed the potential for deterioration of the model stone by these fungi. Our results suggest that the isolated fungal communities of the two Brazilian localities have the ability to adapt to environmental adversities over the four seasons of the year, predicting adaptive population dynamics in the stone colonization. We conclude that this study on the ecological dynamics of the rock-inhabiting fungal communities can help to understand the competitive interactions between the environmental fungi. In addition, these fungi may contribute to the preservation of the Brazilian historical heritage that is vulnerable to environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Allsopp D (2011) Worldwide wastage: the economics of biodeterioration. Microbiol Today 38:150–153

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos SC, Pimenta JC, Dias DR, Chalfoun MS, Angélico CL, Tavares LS (2013) Pectinases from a new strain of Cladosporium cladosporioides (Fres.) De Vries isolated from coffee bean. WJAS 9(2):167–172

    CAS  Google Scholar 

  • Boniek D, de Oliveira LVN, de Queiroz NR, Paiva CAO, Lana UGP, dos Santos AFB, Resende-Stoianoff MA (2017a) Effect of environmental factors on rock-inhabiting fungal communities from Brazilian soapstone samples. J Environ Sci Eng B 6(2):55–71

    CAS  Google Scholar 

  • Boniek D, Mendes IC, dos Santos AFB, Resende-Stoianoff MA (2017b) Biocidal effect of gamma radiation on the ecology of filamentous fungal populations associated with stone deterioration. J Environ Sci Eng A 6:252–259

    CAS  Google Scholar 

  • Boniek D, Mendes IC, Paiva CAO, Lana UGP, dos Santos AFB, Resende-Stoianoff MA (2017c) Ecology and identification of environmental fungi and metabolic processes involved in the biodeterioration of Brazilian soapstone historical. Lett Appl Microbiol 65(5):431–438

    Article  CAS  PubMed  Google Scholar 

  • Branco HDC, Santos AFB (1994) Object identification. In: Gudrun M. Herkenrath (ed) IDEAS-investigations into devices against environmental attack on stones. Brazil 1:45–61

  • Burford EP, Fomina M, Gadd GM (2003a) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Burford EP, Kierans M, Gadd GM (2003b) Geomycology: fungal growth in mineral substrata. Mycologist 17:98–107

    Article  Google Scholar 

  • Callol MV (2013) Biodeterioração do patrimônio histórico documental, alternativas para erradicação e controle. MAST/FCRB Rio de Janeiro pp 139

  • Catanozi G (2011) Importância dos aspectos ecológicos na análise qualiquantitativa na macrofauna edáfica. Rev Ibirapuera São Paulo 1:42–52

    Google Scholar 

  • Cavello IA, Hours RA, Cavalitto SF (2012) Bioprocessing of “hair waste” by Paecilomyces lilacinus as a source of a bleach-stable, alkaline, and thermostable keratinase with potential application as a laundry detergent additive: characterization and wash performance analysis. Biotechnol Res Int. https://doi.org/10.1155/2012/369308

  • Chimienti G, Piredda R, Pepe G, van der Werf ID, Sabbatini L, Crecchio C, Ricciuti P, D'Erchia AM, Manzari C, Pesole G (2016) Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. Appl Microbiol Biotechnol 100(19):8537–8548

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  • Costa AG (2009) Rochas e histórias do patrimônio cultural do Brasil e de Minas. Bem-te-vi, Brazil, Rio de Janeiro, p 291

    Google Scholar 

  • Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 1:24–36

    Google Scholar 

  • Devevre O, Garbaye J, Botton B (1996) Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soils. Mycol Res 100:1367–1374

    Article  CAS  Google Scholar 

  • Dutton MV, Evans CV (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Ettenauer J, Piñar G, Lopandic K, Spangl B, Ellersdorfer G, Voitl C, Sterflinger K (2012) Microbes on building materials - evaluation of DNA extraction protocols as common basis for molecular analysis. Sci Total Environ 439:44–53

    Article  CAS  PubMed  Google Scholar 

  • Fazio AT, Cavicchiolib A, Penna DSA, Chambergo FS, de Faria DLA (2015) Towards a better comprehension of biodeterioration in earthen architecture: study of fungi colonisation on historic wall surfaces in Brazil. J Cult Herit 16:934–938

    Article  Google Scholar 

  • Ferreira MC, Cantrell CL, Wedge DE, Gonçalves VN, Jacob MR, Khan S, Rosa CA, Rosa LH (2017) Diversity of the endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from the endangered Brazilian rupestrian grasslands. Biochem Syst Ecol 71:163–169

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 3:3–49

    Article  CAS  Google Scholar 

  • Gadd GM, Dyer TD (2017) Bioprotection of the built environment and cultural heritage. Microb Biotechnol. https://doi.org/10.1111/1751-7915.12750

  • Gaylarde C, Ogawa A, Beech I, Kowalski M, Baptista-Neto JA (2017) Analysis of dark crusts on the church of Nossa Senhora do Carmo in Rio de Janeiro, Brazil, using chemical, microscope and metabarcoding microbial identification techniques. Int Biodeterior Biodegrad 117:60–67

    Article  CAS  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya N, Pupo D, Alves TMA, Junior PAS, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME 7:434–1451

    Article  CAS  Google Scholar 

  • Gomez-Cornelio S, Mendoza-Vega J, Gaylarde CC, Reyes-Estebanez M, Moron-Rios A, De La Rosa-Garcia SC, Ortega-Morales BO (2012) Succession of fungi colonizing porous and compact limestone exposed to subtropical environments. Fungal Biol 116:1064–1072

    Article  PubMed  Google Scholar 

  • Gonçalves VN, Cantrell CL, Wedge DE, Ferreira MC, Soares MA, Jacob MR, Oliveira FS, Galante D, Rodrigues F, Alves TMA, Zani CL, Junior PAS, Murta S, Romanha AJ, Barbosa EC, Kroon EG, Oliveira JG, Gomez-Silva B, Galetovic A, Rosa CA, Rosa LH (2015) Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol. https://doi.org/10.1111/1462-2920.13005

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9(7):1613–1631

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • INMET (2018) Instituto Nacional de Meteorologia. Available at http://http://wwwinmetgovbr/portal/ accessed 18 Jan 2016

  • Isola D, Zucconi L, Onofri S, Caneva G, de Hoog GS, Selbmann L (2016) Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers 76:75–96

    Article  Google Scholar 

  • Krumbein WE (1966) Zur Frage der Gesteinsverwitterung (Über geochemische und mikrobiologische Bereiche der oxogenen Dynamik). Julius Maximilian Universität Würzburg, Dissertation, Universitat Würzburg, pp 113

  • Kumar R, Kumar AV (1999) Biodeteriogens: characteristics and biodeterioration mechanisms. In: Agnew N (ed) Biodeterioration of stone in tropical environments. J. Paul Getty trust, the Getty Conservation Institute, United States of America, Los Angeles, pp 1:8

  • Li Q, Zhang B, He Z, Yang X (2016) Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS One. https://doi.org/10.1371/journal.pone.0163287

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2010) Brock microbiology of microorganisms. Prentice-Hall, Englewood, p 1032

    Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous. In: Jan S, Lange L (eds) Fungi, advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer Academic/Plenum Publishers, New York, pp 307–340

    Chapter  Google Scholar 

  • Mansour MMA (2017) Effects of the halophilic fungi Cladosporium sphaerospermum, Wallemia sebi, Aureobasidium pullulans and Aspergillus nidulans on halite formed on sandstone surface. Int Biodeterior Biodegrad 117:289–298

    Article  CAS  Google Scholar 

  • Margalef R (1991) Ecología, 2nd edn. Barcelona, Ômega, p 968

    Google Scholar 

  • Marvasi M, Donnarumma F, Frandi A, Mastromei G, Sterflinger K, Tiano P, Perito B (2012) Black microcolonial fungi as deteriogens of two famous marble statues in Florence, Italy. Int Biodeterior Biodegrad 68:36–44

    Article  CAS  Google Scholar 

  • May E, Lewis FJ, Pereira S, Tayler S, Seaward MRD, Allsopp D (1993) Microbial deterioration of building stone - a review. Biodeterioration Abstract 7:109–123

    Google Scholar 

  • Mitchell R, Gu JD (2010) Environmental microbiology, 2nd edn. Wiley Blackwell, Hoboken, pp 389

  • Moroni B, Pitzurra L (2008) Biodegradation of atmospheric pollutants by fungi: a crucial point in the corrosion of carbonate building stone. Int Biodeterior Biodegrad 62:391–396

    Article  CAS  Google Scholar 

  • Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I, Hasenekoglu I (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci Total Environ 364:272–283

    Article  CAS  PubMed  Google Scholar 

  • Ogawa A, Celikkol-Aydin S, Gaylarde C, Baptista-Neto JA, Beech I (2017) Microbial communities on painted wet and dry external surfaces of a historic fortress in Niteroi, Brazil. Int Biodeterior Biodegrad 123:164–173

    Article  Google Scholar 

  • Resende MA, Castro-Rezende G, Viana EM, Becker TW, Warscheid T (1996) Acid production of fungi isolated from stones of historical monuments of state of Minas Gerais, Brazil. In: Second LABS (Latin American Biodeterioration Symposium) Gramado RS Brazil, pp 65–67

  • Ricklefs RE (2003) A economia da natureza. Guanabara Koogan, Rio de Janeiro, p 572

    Google Scholar 

  • Savkovic Z, Unkovic N, Stupar M, Frankovic M, Jovanovic M, Eric S, Saric K, Stankovic S, Dimkic I, Vukojevic J, Grbic ML (2016) Diversity and biodeteriorative potential of fungal dwellers on ancient stone stela. Int Biodeterior Biodegrad 115:212–223

    Article  CAS  Google Scholar 

  • Sazanova KV, Shchiparev SM, Vlasov DY (2014) Formation of organic acids by fungi isolated from the surface of stone monuments. Mikrobiologiia 83:516–522

    CAS  Google Scholar 

  • Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments- an updated overview. Adv Appl Microbiol 66:97–139

    Article  CAS  PubMed  Google Scholar 

  • Sohrabi M, Favero-Longo SE, Pérez-Ortega S, Ascaso C, Haghighat Z, Talebian MH, Fadaei H, de los Ríos A (2017) Lichen colonization and associated deterioration processes in Pasargadae, UNESCO world heritage site, Iran. Int Biodeterior Biodegrad 117:171–182

    Article  CAS  Google Scholar 

  • Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Sci 215:1093–1095

    Article  CAS  Google Scholar 

  • Sterflinger K (2000) Fungi as geological agents. Geomicrobiol J 17:97–124

    Article  CAS  Google Scholar 

  • Sterflinger K, Little B, Piñar G, Pinzari F, de los Rios A, Gu JD (2018) Future directions and challenges in biodeterioration research on historic materials and cultural properties. Int Biodeterior Biodegrad 129:10–12

    Article  CAS  Google Scholar 

  • Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art-tilting at windmills? Appl Microbiol Biotechnol 97:9637–9646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterflinger K, Prillinger H (2001) Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria). Antonie Van Leeuwenhoek 80:275–286

    Article  CAS  PubMed  Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370

    Article  CAS  PubMed  Google Scholar 

  • Tayler S, May E (1991) The seasonality of heterotrophic bacteria on sandstones of ancient monuments. Int Biodeterior 28:49–64

    Article  Google Scholar 

  • Towsend CR, Begon M, Harper JL (2006) Ecology: from individuals to ecosystems. Willey Blackwell Publishing, Hoboken, pp 750

  • Urzi C, Krumbein WE (1994) Microbiological impacts on cultural heritage. In: Krumbein WE, Brimblecombe P, Cosgrove DE, Staniforth S (eds) Durability and change: the science, responsibility, and cost of sustaining cultural heritage. Wiley, Chichester, pp 107–135

    Google Scholar 

  • Verdier T, Coutand M, Bertron A, Roques C (2014) A review of indoor microbial growth across building materials and sampling and analysis methods. Build Environ 80:136–149

    Article  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  CAS  Google Scholar 

  • Warscheid T, Krumbein WE (1994) Biodeterioration processes on inorganic materials and means of countermeasures. Mater Corros 45:105–113

    Article  CAS  Google Scholar 

  • Xu HB, Tsukuda M, Takahara Y, Sato T, Gu JD, Katayama Y (2018) Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone. Int Biodeterior Biodegrad 126:95–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Marcos Paulo de Souza Miranda - MPMG (Ministério Público do Estado de Minas Gerais), Dr. Ubiraci Gomes de Paula Lana for the DNA sequencing, MSc. André Luís Andrade (IPHAN), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Boniek.

Additional information

Section Editor: Dominik Begerow

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 456 kb)

ESM 2

(DOC 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boniek, D., Damaceno, Q.S., de Abreu, C.S. et al. Filamentous fungi associated with Brazilian stone samples: structure of the fungal community, diversity indexes, and ecological analysis. Mycol Progress 18, 565–576 (2019). https://doi.org/10.1007/s11557-019-01470-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01470-w

Keywords

Navigation