Mycological Progress

, Volume 18, Issue 4, pp 529–540 | Cite as

Two new species of Pucciniastrum producing dimorphic sori and spores from northeast of China

  • Jing-Xin JiEmail author
  • Zhuang Li
  • Yu Li
  • Makoto Kakishima
Original Article
Part of the following topical collections:
  1. Topical collection on Basidiomycote Mycology in honor of Franz Oberwinkler who passed away in March 2018


During field surveys for rust fungi in northeast of China, rust specimens on Galium (Rubiaceae), Aster, and Kalimeris (Compositae) were found in Jilin and Heilongjiang Provinces. Comparative morphology and phylogenetic analyses with 28S and ITS regions of rDNA showed that these specimens belong to Pucciniastrum, although no telial stage was found and they were different to Pucciniastrum species previously reported from the same host genera. Therefore, the rust fungus on Galium and another on Aster and Kalimeris are described as P. coronisporum and P. verruculosum, respectively. Both new species are mainly characterized by having two types of uredinia producing morphologically different urediniospores, which are intermingled in most of the uredinia. Pucciniastrum coronisporum has echinulate and coronate urediniospores, while those of P. verruculosum are echinulate and verrucose to nail-headed.


Aster Galium Kalimeris Morphology Phylogeny Thekopsora 



We wish to thank Dr. E.H.C. McKenzie, Landcare Research, Auckland, New Zealand, and Dr. M. C. Aime, Department of Botany and Plant Pathology, Purdue University, IN, USA, for critical reading of the manuscript and suggestions."

Supplementary material

11557_2018_1460_MOESM1_ESM.xlsx (13 kb)
ESM 1 (XLSX 13 kb)
11557_2018_1460_MOESM2_ESM.xlsx (14 kb)
ESM 2 (XLSX 14 kb)


  1. Aime MC (2006) Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience 47:112–122CrossRefGoogle Scholar
  2. Aime MC, Bell CD, Wilson AW (2018) Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Stud Mycol 89:143–152. CrossRefGoogle Scholar
  3. Aime MC, McTaggart AR, Mondo SJ, Duplessis S (2017) Phylegenetics and phylogenomics of rust fungi. Adv Genet 100:267–307. CrossRefGoogle Scholar
  4. Arthur JC (1962) Manual of the rusts in United States and Canada. Hafner Publishing Company, New YorkGoogle Scholar
  5. Azbukina ZM (2015) Definitorium fungorum Rossiae, Ordo Pucciniales 1. Dal’nauka, VladivostokGoogle Scholar
  6. Cummins GB (1978) Rust fungi on legumes and composites in North America. The University of Arizona Press, TucsonGoogle Scholar
  7. Cummins GB, Hiratsuka Y (2003) Illustrated genera of rust fungi, Third edn. APS Press, St. PaulGoogle Scholar
  8. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. CrossRefGoogle Scholar
  9. Gäumann E (1959) Die Rostpilze Mitteleuropas. Buchdruckerei Bucheler Co, BernGoogle Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. Hiratsuka N (1936) A monograph of the Pucciniastreae. Mem Tottori Agr Coll 4:1–374Google Scholar
  12. Hiratsuka N (1958) Revision of taxonomy of the Pucciniastreae, with special reference to species of the Japanese Archipelago. Mem Fac Agr Tokyo Univ Educ 5:1–167Google Scholar
  13. Hiratsuka N, Kaneko S (1982) A taxonomic revision of Melampsora on willows in Japan. Rept Tottori Mycol Inst (Japan) 20:1–32Google Scholar
  14. Hiratsuka N, Sato S, Katsuya K, Kakishima M, Hiratsuka Y, Kaneko S, Ono Y, Sato T, Harada Y, Hiratsuka T, Nakayama K (1992) The rust flora of Japan. Tsukuba Shuppankai, TsukubaGoogle Scholar
  15. Hiratsuka Y, Sato S (1982) Morphology and taxonomy of rust fungi. In: Scott KJ, Chakravorty AK (eds) The rust fungi. Academic Press, London, pp 1–36Google Scholar
  16. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  17. Ji JX, Wang Q, Li Z, Li Y, Kakishima M (2016) Notes on rust fungi in China 2. Two species of Coleosporium on Composiate. Mycotaxon 131:811–820. CrossRefGoogle Scholar
  18. Kaneko S (1981) The species of Coleosporium, the causes of pine needle rusts, in the Japanese Archipelago. Rept Tottori Mycol Inst (Japan) 19:1–159Google Scholar
  19. Lee SK, Kakishima M (1999) Aeciospore surface structures of Gymnosporangium and Roestelia (Uredinales). Mycoscience 40:109–120CrossRefGoogle Scholar
  20. McTaggart AR, Aime MC (2017) The species of Coleosporium (Pucciniales) on Solidago in North America. Fungal Biol 122:800–809. CrossRefGoogle Scholar
  21. O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomophic speciation in fungal systematics. CAB International, Wallingford, pp 225–233Google Scholar
  22. Okane I, Yamaoka Y, Kakishima M, Abe JP, Obata K (2014) Puccinia galiiuniversa, a new caricicolous rust fungus systematically inhabiting Galium aparine in its spermogonial-aecial stage. Mycoscience 55:89–97. CrossRefGoogle Scholar
  23. Padamsee M, McKenzie EHC (2014) A new species of rust fungus on the New Zealand endemic plant, Myosotidium, from the isolated Chatham Islands. Phytotaxa 174:223–230. CrossRefGoogle Scholar
  24. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  25. Sato S, Katsuya K, Hiratsuka Y (1993) Morphology, taxonomy and nomenclature of Tsuga-Ericaceae rusts. Trans Mycol Soc Jpn 34:47–62Google Scholar
  26. Sato T, Sato S (1982) Aeciospore surface structure of the Uredinales. Trans Mycol Soc Jpn 23:51–63Google Scholar
  27. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337. CrossRefGoogle Scholar
  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefGoogle Scholar
  29. Tai FL (1979) Sylloge fungorum sinicorum. Science Press, BeijingGoogle Scholar
  30. Termorshuizen AJ, Swertz CA (2011) Dutch rust fungi. Aad Termorsguizen, NetherlandGoogle Scholar
  31. Virtudazo EV, Nakamura H, Kakishima M (2001) Phylogenetic analysis of sugarcane rusts based on sequences of ITS, 5.8 S rDNA and D1/D2 regions of LSU rDNA. J Gen Plant Pathol 67:28–36. CrossRefGoogle Scholar
  32. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to the methods and applications. Academic Press, New York, pp 315–322Google Scholar
  33. Wilson M, Henderson DM (1966) The British rust fungi. Cambridge University Press, CambridgeGoogle Scholar
  34. Yang T, Tian CM, Liang YM, Kakishima M (2014) Thekopsora ostryae (Pucciniastraceae, Pucciniales), a new species from Gansu, northwestern China. Mycoscience 55:246–251. CrossRefGoogle Scholar
  35. Yang T, Tian CM, Lu HY, Liang YM, Kakishima M (2015) Two new rust fungi of Thekopsora on Cornus (Cornaceae) from western China. Mycoscience 56:461–469. CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jing-Xin Ji
    • 1
    Email author
  • Zhuang Li
    • 2
  • Yu Li
    • 1
  • Makoto Kakishima
    • 1
    • 3
  1. 1.Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal FungiJilin Agricultural UniversityChangchunChina
  2. 2.College of Plant PathologyShandong Agricultural UniversityTai’anChina
  3. 3.University of TsukubaTsukubaJapan

Personalised recommendations