Mycological Progress

, Volume 18, Issue 1–2, pp 5–76 | Cite as

The ascomycete genus Niesslia and associated monocillium-like anamorphs

  • W. Gams
  • B. Stielow
  • T. Gräfenhan
  • H.-J. SchroersEmail author
Original Article


The species of Niesslia including anamorphs formerly known as Monocillium form a distinct group in the Hypocreales and can be delimited by several unique morphological characters. Niesslia species inhabit decaying plant substrates, such as leaf litter or bark of diverse plants, especially coniferous hosts. Certain species occur on and may parasitize lichens, fruiting bodies of other fungi and even nematode eggs. Taxonomically, species of Niesslia are classified in the Niessliaceae. Niesslia species are recognised by their tiny superficial, mostly dark brown, shiny and typically spine covered ascomata. Monocillium-like phialides formed in situ and in culture are usually partly or entirely thick-walled. Phialides with wall thickening only in their basal parts sometimes expand in width to taper again into a conidiiferous neck, while others terminate in a non-sporulating vesicle. Based on the revised generic concept presented here, Niesslia accommodates 50 cultured species plus around 40 species known only from herbarium material. Some of the latter species may eventually have to be excluded from Niesslia but are maintained in the genus ad interim, until DNA sequences necessary for their accurate reclassification are available. The taxonomic concept based on morphological characters is corroborated by DNA sequences of phylogenetic marker loci such as the large subunit (28S) of the ribosomal RNA gene, internal transcribed spacer regions 1 and 2 including the 5.8S ribosomal RNA gene, and partial sequences of translation elongation factor 1-α, β-tubulin 2 and γ-actin genes. These DNA barcodes support most of the morphologically delimited species and the generic concept of Niesslia.


Hypocreales Niessliaceae Species taxonomy 



The manuscript was originally conceived and initiated by the main author, Dr. (Konrad) Walter Gams, who passed away on April 9, 2017, at the age of 82 in his second home in Italy. All species descriptions, dichotomous keys, pencil drawings of examined fungal isolates and most of the text originated from WG’s studies of specimens collected by himself and other mycologists around the globe. The foundation of a taxonomic revision of the ascomycete genus Niesslia and its monocillium-like anamorphs was established in his renowned book on ‘Cephalosporium’-like hyphomycetes published in 1971. In subsequent decades, Walter Gams published two new Niesslia/Monocillium species as he continued to collect, isolate and examine fresh material in preparation of a comprehensive monograph. More specifically, WG contemplated the idea of a taxonomic revision during the hyphomycete course held in Sugadaira, Japan, in August 1997. HJS and TG vividly recall conversations with the main author about his intention to concentrate on new collections of Niesslia specimens including its anamorph, formerly known as Monocillium. His plans later culminated in a draft manuscript on new and revised taxa of Niesslia that was coauthored by Margaret E. Barr and Gary J. Samuels but in the end was never published. After his retirement and departure from the Centraalbureau voor Schimmelcultures in 2008, WG dedicated more of his time to a compilation of available data and knowledge on this and other groups of hypocrealean ascomycetes. With the support of BS and the Westerdijk Fungal Biodiversity Institute, preserved cultures were re-examined and barcoded based on DNA sequences of phylogenetic marker genes. Preliminary results of the taxonomic studies on Niesslia were summarised on a scientific poster presented at the 10th International Mycological Congress held in Bangkok, Thailand, in 2014. With ailments and progressing age, the status of WG’s taxonomic studies did not change significantly after 2015, which represents the most recent information captured here. For decades, a taxonomic revision of the genus Niesslia was a matter close to WG’s heart. Without doubt, other mycologists contributed material, data and information to his studies of these inconspicuous, often minute representatives of the Hypocreales. Of course, many of them deserve co-authorship as much as any of those listed on the paper. As former students, HJS and TG took on a commitment of reviewing and compiling scientific material from WG’s estate, including original versions of species descriptions, DNA analyses, literature references and other more or less complete parts of the text. HJS inventoried pencil drawings and notes of the Niesslia material examined by WG, and a considerable proportion of drawings already were inked by an unknown artist. The coauthors tried to preserve as much of the original text and information as technically possible without deviating from WG drafts. However, they edited and elaborated on the taxonomic concepts conceived by WG, and responded to concerns by peer reviewers. BS facilitated most of the exchange between Walter Gams and the culture collection of the Westerdijk Fungal Biodiversity Institute. From the WFBI collection, BS also extracted the DNA and generated DNA barcodes of the fungal cultures studied. We thank Arien van Iperen and Trix Merkx at WFBI for checking specimens and specimen numbers in the herbarium of the WFBI. HJS and TG gratefully acknowledge the assistance of curators Ann Bogaerts (Botanic Garden Meise, Belgium, herbarium BR), Begoña Aguirre-Hudson (Royal Botanic Gardens, UK England, Kew, K), Jorge A. Chayle (Museo de La Plata Herbarium, Universidad Nacional de La Plata Herbario, La Plata, Argentina, LPS), Cony Decock (Université Catholique de Louvain, Belgium, MUCL), Lorinda Leonardi (New York State Museum, USA New York, Albany, NYS), Rossella Marcucciz (Erbario dell’Università di Padua, Italy, PAD), and Jordan K. Teisher (Academy of Natural Sciences, USA Pennsylvania. Philadelphia, PH). Curators of these herbaria and others including Botanischer Garten und Botanisches Museum Berlin-Dahlem, Germany, Berlin (B), The Natural History Museum, UK, England, London (BM), U.S. National Fungus Collections, USDA-ARS, USA Maryland, Beltsville (BPI), Agriculture and Agri-Food Canada, Canada, Ontario, Ottawa (DAOM), CABI Bioscience UK Centre, UK England, Egham (IMI), Naturalis, Netherlands, Leiden (L/U), Botanische Staatssammlung München, Germany, München (M), The New York Botanical Garden, USA, NY, Bronx (NY), Muséum National d’Histoire Naturelle, France, Paris (PC), Manaaki Whenua Landcare Research, New Zealand, Auckland (PDD), Swedish Museum of Natural History, Sweden, Stockholm (S), Università di Siena, Italy, Siena (SIENA), Museum of Evolution, Sweden, Uppsala (UPS), and Naturhistorisches Museum Wien, Austria (W) made specimens and data available to WG. Data related to certain specimens cited here were also downloaded from the Global Biodiversity Information Facility (GBIF 2018). Finally yet importantly, we would like to thank Amy Y. Rossman (Department of Botany and Plant Pathology, Oregon State University, USA) and Keith A. Seifert (Ottawa Research and Development Centre, Agriculture and Agri-Food Canada) for numerous comments, suggestions and corrections that significantly improved the quality of the text.

Supplementary material

11557_2018_1459_MOESM1_ESM.pdf (26 kb)
ESM 1 (PDF 25.5 kb)


  1. Ando K, Nawawi A, Manoch L, Pitt JI (1998) Three new species and a new combination in the genus Torulomyces from soil. Mycoscience 39:313–318CrossRefGoogle Scholar
  2. Ashrafi S, Stadler M, Dababat AA, Richert-Pöggeler KR, Finckh MR, Maier W (2017) Monocillium gamsii sp. nov. and Monocillium bulbillosum: two nematode-associated fungi parasitising the eggs of Heterodera filipjevi. MycoKeys 27:21–38. CrossRefGoogle Scholar
  3. Auerswald B (1869) Synopsis pyrenomycetum europaeorum. In: Gonnerman W, Rabenhorst GL (eds) Mycologia Europaea, vol 5–6, pp 1–30Google Scholar
  4. Aveskamp MM, Verkley GJ, de Gruyter J, Murace MA, Perelló A, Woudenberg JH, Groenewald JZ, Crous PW (2009) DNA phylogeny reveals polyphyly of Phoma section Peyronellea and multiple taxonomic novelties. Mycologia 101:363–382CrossRefGoogle Scholar
  5. Ayer WA, Lee SP, Tsuneda A, Hiratsuka Y (1980) The isolation, identification, and bioassay of the antifungal metabolites produced by Monocillium nordinii. Canad J Microbiol 26:766–773. CrossRefGoogle Scholar
  6. Ayer WA, Pena-Rodriguez L, Vederas JC (1981) Identification of sterigmatocystin as a metabolite of Monocillium nordinii. Can J Microbiol 27:846–847. CrossRefGoogle Scholar
  7. Barr ME (1968) The Venturiaceae in North America. Can J Bot 46:799–864CrossRefGoogle Scholar
  8. Barr M (1983) The ascomycete connection. Mycologia 75(1):1–13. CrossRefGoogle Scholar
  9. Barr ME (1990) Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes. Mycotaxon 39:43–184Google Scholar
  10. Barr ME (1993) Redisposition of some taxa described by J. B. Ellis. Mycotaxon 46:45–76Google Scholar
  11. Barr ME, Rogerson CT, Smith SJ, Haines JH (1986) An annotated catalog of the pyrenomycetes described by Charles H. Peck. Bull N Y State Museum 459:1–74Google Scholar
  12. Barron GL (1961) Monocillium humicola sp. nov. and Paecilomyces variabilis sp.nov. Can J Bot 39(7):1573–1578CrossRefGoogle Scholar
  13. Barron GL (1967) Torulomyces and Monocillium. Mycologia 59(4):716–718. CrossRefGoogle Scholar
  14. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42. CrossRefGoogle Scholar
  15. Bigelow HE, Barr ME (1963) Contribution to the fungus flora of North-Eastern North America. III. Rhodora 65:289–309Google Scholar
  16. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  17. Cash E, Davidson R (1940) Some new species of ascomycetes on coniferous hosts. Mycologia 32(6):728–735. CrossRefGoogle Scholar
  18. Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol Res 108:864–872CrossRefGoogle Scholar
  19. Christensen M, Backus M (1964) Two varieties of Monocillium humicola in Wisconsin Forest soils. Mycologia 56(4):498–504. CrossRefGoogle Scholar
  20. Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Gareth Jones EB, Thambugala KM, Malysheva EF, Malysheva VF, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes CW, Bartlett JS, Blanchette RA, Burgess TI, Carlavilla JR, Coetzee MPA, Damm U, Decock CA, Breeÿen A, den Vries B, de Dutta AK, Holdom DG, Rooney-Latham S, Manjón JL, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadeh Fazeli SA, Amoozegar MA, Romberg MK, Shivas RG, Stalpers JA, Stielow B, Stukely MJC, Swart WJ, Tan YP, Bank M, van der Wood AR, Zhang Y, Groenewald JZ (2014) Fungal planet description sheets: 281–319. Persoonia 33:271CrossRefGoogle Scholar
  21. Domsch KH, Gams W (1968) Die Bedeutung vorfruchtabhängiger Verschiebungen in der Bodenmikroflora. 1. Der Einfluß von Bodenpilzen auf die Wurzelentwicklung von Weizen, Erbsen und Raps. Phytopathol Z 63:64–74CrossRefGoogle Scholar
  22. Domsch KH, Gams W (1969) Variability and potential of a soil fungus population to decompose pectin, xylan and carboxymethyl-cellulose. Soil Biol Biochem 1:29–36. CrossRefGoogle Scholar
  23. Ellis JB, Everhart BM (1892) The North American pyrenomycetes. NewfieldGoogle Scholar
  24. Eriksson O, Hawksworth DL (1991) Outline of the Ascomycetes–1991. Syst Ascomycet 9:39–271Google Scholar
  25. Etayo J (2002) Aportación al conocimiento de los hongos liquenícolas de Colombia. Biblioth Lichenol 84:1–154Google Scholar
  26. Etayo J, Sancho LG (2008) Hongos liquenícolas del Sur de Sudamérica, especialmente de Isla Navarino (Chile). Biblioth Lichenol 98:1–302Google Scholar
  27. Farr ML (1973) An annotated list of Spegazzini’s fungus taxa. Bibl Mycol 35(1, 2):1–1661Google Scholar
  28. Fassatiová O (1982) New or rare records of some Deuteromycetes and Ascomycetes from Czechoslovakia. Česká Mykol 36:100–108Google Scholar
  29. Fernández FA, Huhndorf SM (2005) New species of Chaetosphaeria, Melanopsammella and Tainosphaeria gen. nov. from the Americas. Fungal Divers 18:15–57Google Scholar
  30. Fitzpatrick H (1923) Monograph of the Nitschkieae. Mycologia 15(1):23–44. CrossRefGoogle Scholar
  31. Fuckel KWGL (1870) Symbolae mycologicae. Beiträge zur Kenntniss der Rheinischen Pilze. Jahrb Nassau Ver Natkd 23–24:1–459Google Scholar
  32. Gams W (1971) Cephalosporium-artige Schimmelpilze (Hyphomycetes). G. Fischer, StuttgartGoogle Scholar
  33. Gams W (1975) Cephalosporium-like Hyphomycetes: some tropical species. Trans Br Mycol Soc 64:389–404. CrossRefGoogle Scholar
  34. Gams W, Turhan G (1996) An extreme modification of Monocillium: Monocillium curvisetosum n. sp. Mycotaxon 59:343–348Google Scholar
  35. Gams W, Hoekstra ES, Aptroot A (eds) (1998) CBS Course of Mycology, 4th edn. Centraalbureau voor Schimmelcultures, Baarn & Delft. 165 pGoogle Scholar
  36. (2018) GBIF Occurrence Download (14 August 2018).
  37. Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert KA (2011) An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol 68:79–113CrossRefGoogle Scholar
  38. Gutsevich SA (1964) Für die UdSSR unbekannte Vertreter tropischer Pilzgattungen als Relikte einer Tertiärflora der Krim. Vestn Leningr Univ 21:51–63Google Scholar
  39. Hashmi MH, Kendrick B, Morgan-Jones G (1972) Conidium ontogeny in hyphomycetes. The genera Torulomyces Delitsch and Monocillium Saksena. Can J Bot 50(7):1461–1463. CrossRefGoogle Scholar
  40. Hawksworth DL (1975) Notes on British lichenicolous fungi. I Kew Bull 30:183–203CrossRefGoogle Scholar
  41. Hawksworth DL (1979) The lichenicolous Hyphomycetes. Bull Brit Mus (Nat Hist) 6:183–300Google Scholar
  42. Holm L, Holm K (1981) Ascomycetes on Nordic lycopods. Karstenia 21:57–72. CrossRefGoogle Scholar
  43. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70(1):1–51. CrossRefGoogle Scholar
  44. Hyde KD, Goh TK, Taylor JE, Fröhlich J (1999) Byssosphaeria, Chaetosphaeria, Niesslia and Ornatispora gen. nov., from palms. Mycol Res 103:1423–1439. CrossRefGoogle Scholar
  45. Ivanova NV, DeWaard J, Hebert PDN (2006) An inexpensive, automation friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002CrossRefGoogle Scholar
  46. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. CrossRefGoogle Scholar
  47. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33(2):511–518. CrossRefGoogle Scholar
  48. Keissler KA (1930) Die Flectenparasiten. In: Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, vol 8, pp 1–712Google Scholar
  49. Kirschstein W (1939) Über neue, seltene und kritische Askomyceten und Fungi imperfecti II. Ann Mycol 37:88–140Google Scholar
  50. Li GJ, Hyde KD, Zhao RL et al (2016) Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 78(1):1–237. CrossRefGoogle Scholar
  51. Lumbsch HT, Huhndorf SM (2007) Outline of Ascomycota - 2007. Myconet 13:1–58Google Scholar
  52. Matsushima T (1989) Matsushima Mycological Memoirs No. 6, Kobe, JapanGoogle Scholar
  53. Müller E (1953) Über die Gattungen Eriosphaeria Sacc. und Gaeumannia Petr. Sydowia 7:133–140Google Scholar
  54. Müller E, von Arx JA (1962) Die Gattungen der didymosporen Pyrenomyceten. Beitr Kryptogamenflora Schweiz 11:1–922Google Scholar
  55. Nannfeldt JA (1975a) Stray studies in the Coronophorales (Pyrenomycetes) 1–3. Svensk Bot Tidskr 69:49–66Google Scholar
  56. Nannfeldt JA (1975b) Stray studies in the Coronophorales (Pyrenomycetes) 4–8. Svensk Bot Tidskr 69:289–335Google Scholar
  57. Petrak F (1940) Beiträge zur Pilzflora der Umgegend von Wien. Ann Mycol 38:339–386Google Scholar
  58. Petrak F (1970[1969]) Über Trichosphaeria pulchriseta (Peck) Ellis et Everhart. Sydowia 23:278–281Google Scholar
  59. Ramaley AW (2001) Hyaloseta nolinae, its anamorph Monocillium nolinae and Niesslia agavacearum, new members of the Niessliaceae, Hypocreales, from leaves of Agavaceae. Mycotaxon 79:267–274Google Scholar
  60. Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–89Google Scholar
  61. Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999) Genera of Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol 42:1–248Google Scholar
  62. Roumeguère MC (1880) Publication des “Reliquiae Libertianae”. Rev Mycol Toulouse 2(1):7–24Google Scholar
  63. Saccardo PA (1891) Sylloge fungorum omnium hucusque cognitorum. 9:1–1141Google Scholar
  64. Samuels GJ, Barr ME (1997) Notes on and additions to the Niessliaceae (Hypocreales). Can J Bot 75(12):2165–2176. CrossRefGoogle Scholar
  65. Samuels GJ, Doi Y, Rogerson CT (1990) Hypocreales. Mem N Y Bot Gard 59:6–108Google Scholar
  66. Scheuer C (1993) Cryptoniesslia setulosa gen. et sp. nov. Mycol Res 97:543–546. CrossRefGoogle Scholar
  67. Schneider R (1979) Die Gattung Pyrenochaeta de Notaris. Mitt Biol Bundesanst Land-Forstwirtsch Berl-Dahl 189:1–73Google Scholar
  68. Sivanesan A (1977) The taxonomy and pathology of Venturia species. Bibl Mycol 59:1–139Google Scholar
  69. Sivanesan A, Hsieh WH (1989) New species and new records of ascomycetes from Taiwan. Mycol Res 93:340–351. CrossRefGoogle Scholar
  70. Spegazzini C (1887) Fungi Fuegiani. Bol Acad Nac Cienc Cordoba 11:135–311Google Scholar
  71. Spegazzini C (1910) Hongos chilenos (Fungi Chilenses). Revista de la Facultad de Agronomía y Veterinaría. Univ Nacional de La Plata 6:1–205Google Scholar
  72. Stielow JB, Lévesque CA, Seifert KA et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263. CrossRefGoogle Scholar
  73. Stolk A, Samson RA (1983) The ascomycete genus Eupenicillium and related Penicillium anamorphs. Stud Mycol 23:1–149Google Scholar
  74. Summerbell RC, Gueidan C, Schroers H-J, de Hoog GS, Starink M, Rosete YA, Guarro J, Scott JA (2011) Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol 68:139–162. CrossRefGoogle Scholar
  75. Tretiach M (2002) Niesslia robusta, a new lichenicolous fungus of Tephromela grumosa from Tuscany, Italy. Nova Hedwig 75:357–365CrossRefGoogle Scholar
  76. Tsui CKM, Hyde KD, Hodgkiss J (2001) Paraniesslia tuberculata gen. et sp. nov., and new records of Clypeosphaeria, Leptosphaeria and Astrosphaeriella in Hong Kong freshwater habitats. Mycologia 93:1002–1009.
  77. Tsuneda A, Hiratsuka Y (1980) Parasitization of pine stem rust fungi by Monocillium nordinii. Phytopathology 70:1101–1103CrossRefGoogle Scholar
  78. Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (eds) (2018) International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten.
  79. Visagie CM, Houbraken J, Dijksterhuis J, Seifert KA, Jacobs K, Samson RA (2016) A taxonomic review of Penicillium species producing conidiophores with solitary phialides, classified in section Torulomyces. Persoonia 36:134–155. CrossRefGoogle Scholar
  80. Vu TD, Eberhardt U, Szöke S, Groenewald M, Robert V (2012) A laboratory information management system for DNA barcoding workflows. Integr Biol (Camb) 4(7):744–755. CrossRefGoogle Scholar
  81. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322Google Scholar
  82. Whitton SR, McKenzie EHC, Hyde KD (2012) Teleomorphic microfungi associated with Pandanaceae. In: Whitton SR, McKenzie EHC, Hyde KD (eds) Fungi associated with Pandanaceae, vol 21. Springer, Fungal Diversity Research Series, pp 23–124Google Scholar
  83. Winter G (1887) Ascomyceten: Gymnoasceen und Pyrenomyceten. In: Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, vol 1(2), pp 1–928Google Scholar
  84. Yurkov A, Krüger D, Begerow D, Arnold N, Tarkka MT (2012) Basidiomycetous yeasts from boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus. Microb Ecol 63:295–303. CrossRefGoogle Scholar
  85. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BaarnThe Netherlands
  2. 2.Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
  3. 3.Richardson Centre for Functional Foods and NutraceuticalsUniversity of ManitobaWinnipegCanada
  4. 4.Plant Protection DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia

Personalised recommendations