Advertisement

Mycological Progress

, Volume 18, Issue 1–2, pp 163–174 | Cite as

Pileospora piceae gen. et sp. nov. (Septorioideaceae, Botryosphaeriales) from Picea rubens

  • Joey B. TanneyEmail author
  • Keith A. Seifert
Original Article
  • 237 Downloads

Abstract

During a survey of conifer-associated fungi from the Acadian forest in Eastern Canada, an unidentified endophyte species was isolated from surface-sterilized red spruce (Picea rubens) needles. Conidiomata developed in vitro and produced dimorphic conidia, which provided morphological evidence of its position within Botryosphaeriales. Corresponding conidiomata were also observed on a dead red spruce twig. Phylogenetic analyses using nuc internal transcribed spacer rDNA (ITS) and partial 28S nuc rDNA (LSU) sequences confirmed its relationship within Botryosphaeriales, in a polytomy containing Saccharataceae and Septorioideaceae. Based on morphological and phylogenetic evidence, we describe a novel monotypic genus and species as Pileospora piceae, tentatively placed within Septorioideaceae. ITS similarity shows P. piceae was previously detected in an unrelated study as an unidentified fungal endophyte of black spruce (Picea mariana) from Eastern Quebec.

Keywords

Botryosphaeriaceae Botryosphaeriales Endophytes Neofusicoccum Saccharataceae 

Notes

Acknowledgements

We are grateful to the MMTL group of ORDC-AAFC, Ottawa, for processing DNA sequencing. Dr. J.D. Miller and Dr. M.E. Smith of Carleton University provided valuable support in the planning and implementation of this work.

Funding information

This study was supported by the Natural Sciences and Engineering Research Council of Canada PGSD2-459312-2014 to J.B. Tanney and the NSERC CRDPJ 421782-11 to J.D. Miller, K.A. Seifert, and D.W. Malloch.

References

  1. Abdollahzadeh J, Goltapeh EM, Javadi A, Shams-Bakhsh M, Zare R, Phillips A (2009) Barriopsis iraniana and Phaeobotryon cupressi: two new species of the Botryosphaeriaceae from trees in Iran. Persoonia 23:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves A, Correia A, Phillips AJ (2006) Multi-gene genealogies and morphological data support Diplodia cupressi sp. nov., previously recognized as D. pinea f. sp. cupressi, as a distinct species. Fungal Divers 23:1–15Google Scholar
  3. Alves A, Crous PW, Correia A, Phillips AJ (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers 28:1–13Google Scholar
  4. Alves A, Barradas C, Phillips AJ, Correia A (2013) Diversity of Botryosphaeriaceae species associated with conifers in Portugal. Eur J Plant Pathol 135(4):791–804CrossRefGoogle Scholar
  5. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88(3):541–549CrossRefPubMedGoogle Scholar
  6. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3(4):267–274CrossRefGoogle Scholar
  7. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100(26):15649–15654CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brady J (1965) A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull World Health Organ 32(1):143PubMedPubMedCentralGoogle Scholar
  9. Broders K, Munck I, Wyka S, Iriarte G, Beaudoin E (2015) Characterization of fungal pathogens associated with white pine needle damage (WPND) in northeastern North America. Forests 6(11):4088–4104CrossRefGoogle Scholar
  10. Burgess TI, Barber PA, Mohali S, Pegg G, de Beer W, Wingfield MJ (2006) Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia 98(3):423–435CrossRefPubMedGoogle Scholar
  11. Chen S, Pavlic D, Roux J, Slippers B, Xie Y, Wingfield MJ, Zhou XD (2011) Characterization of Botryosphaeriaceae from plantation-grown Eucalyptus species in South China. Plant Path 60(4):739–751CrossRefGoogle Scholar
  12. Crous PW, Groenewald JZ, Taylor JE (2009) Saccharata intermedia. Fungal Planet 43. Persoonia 23:198–199Google Scholar
  13. Crous PW, Summerell BA, Shivas RG, Romberg M, Mel’nik VA, Verkley GJ, Groenewald JZ (2011) Fungal planet description sheets: 92–106. Persoonia 27:130–162CrossRefPubMedPubMedCentralGoogle Scholar
  14. Crous PW, Summerell BA, Shivas RG, Burgess TI, Decock CA, Dreyer LL, Granke LL, Guest DI, Hardy GS, Hausbeck MK, Hüberli D (2012a) Fungal planet description sheets: 107–127. Persoonia 28:138–182CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crous PW, Shivas RG, Wingfield MJ, Summerell BA, Rossman AY, Alves JL, Adams GC, Barreto RW, Bell A, Coutinho ML, Flory SL, Gates G, Grice KR, Hardy GESJ, Kleczewski NM, Lombard L, Longa CMO, Macedo F, Louis-Seize GW, Mahoney DP, Maresi G, Martin-Sanchez PM, Marvanová L, Minnis AM, Morgado LN, Noordeloos ME, Phillips AJL, Quaedvlieg W, Ryan PG, Saiz-Jimenez C, Seifert KA, Swart WJ, Tan YP, Tanney JB, Thu PQ, Videira SIR, Walker DM, Groenewald JZ (2012b) Fungal planet description sheets: 128–153. Persoonia 29:146–201CrossRefPubMedPubMedCentralGoogle Scholar
  16. Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, Van der Bank M, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, Damm U (2013) Fungal planet description sheets: 154–213. Persoonia 31:186–296CrossRefGoogle Scholar
  17. Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Jones EG (2014) Fungal planet description sheets: 281–319. Persoonia 33:212–289CrossRefPubMedPubMedCentralGoogle Scholar
  18. Crous PW, Müller MM, Sánchez RM, Giordano L, Bianchinotti MV, Anderson FE, Groenewald JZ (2015a) Resolving Tiarosporella spp. allied to Botryosphaeriaceae and Phacidiaceae. Phytotaxa 202(2):73–93CrossRefGoogle Scholar
  19. Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivas RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS (2015b) Fungal planet description sheets: 371–399. Persoonia 35:264–327CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crous PW, Wingfield MJ, Burgess TI, Hardy GS, Crane C, Barrett S, Cano-Lira JF, Le Roux JJ, Thangavel R, Guarro J, Stchigel AM (2016) Fungal planet description sheets: 469–557. Persoonia 37:218–403CrossRefPubMedPubMedCentralGoogle Scholar
  21. Crous PW, Wingfield MJ, Burgess TI, Hardy GS, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R (2017a) Fungal planet description sheets: 558–624. Persoonia 38:240–624CrossRefPubMedPubMedCentralGoogle Scholar
  22. Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GS, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J, Lombard L (2017b) Fungal planet description sheets: 625–715. Persoonia 39:270–467PubMedPubMedCentralGoogle Scholar
  23. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fan X-L, Yang Q, Cao B, Liang Y-M, Tian C-M (2015) New record of Aplosporella javeedii on five hosts in China based on multi-gene analysis and morphology. Mycotaxon 130(3):749–756CrossRefGoogle Scholar
  25. Funk A (1965) A new parasite of spruce from British Columbia. Can J Bot 43(1):45–48CrossRefGoogle Scholar
  26. Funk A (1979) Rileya, a new genus of Coelomycetes. Can J Bot 57(1):7–10CrossRefGoogle Scholar
  27. Funk A (1981) Parasitic microfungi of western trees. Canadian Forestry Service, Pacific Forest Research Centre, VictoriaGoogle Scholar
  28. Golzar H, Burgess TI (2011) Neofusicoccum parvum, a causal agent associated with cankers and decline of Norfolk Island pine in Australia. Australas Plant Pathol 40(5):484–489CrossRefGoogle Scholar
  29. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42(2):543–555CrossRefPubMedGoogle Scholar
  30. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35(2):518–522CrossRefPubMedCentralGoogle Scholar
  31. Huang C-L, Wang Y-Z (2011) New records of endophytic fungi associated with the Araucariaceae in Taiwan. Coll Res 24:87–95Google Scholar
  32. Inderbitzin P, Bostock RM, Trouillas FP, Michailides TJ (2010) A six locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond. Mycologia 102(6):1350–1368CrossRefPubMedGoogle Scholar
  33. Kaneko S, Fujioka H, Zinno Y (1989) A new species of Septoria on Japanese black pine. T Mycol Soc Japan 30(4):463–466Google Scholar
  34. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kihara J, Ueno M, Arase S (2015) PCR-mediated detection of endophytic and phytopathogenic fungi from needles of the Japanese black pine, Pinus thunbergii. Open J For 5(04):431–442Google Scholar
  36. Kornerup A, Wanscher JH (1978) Methuen handbook of colour, 3rd edn. Methuen Co., Ltd., LondonGoogle Scholar
  37. Liu J, Chomnunti P, Cai L, Phookamsak R, Chukeatirote E, Jones EB, Moslem M, Hyde KD (2010) Phylogeny and morphology of Neodeightonia palmicola sp. nov. from palms. Sydowia 62(2):261–276Google Scholar
  38. Marincowitz S, Groenewald JZ, Wingfield MJ, Crous PW (2008) Species of Botryosphaeriaceae occurring on Proteaceae. Persoonia 21(1):111–118CrossRefPubMedPubMedCentralGoogle Scholar
  39. McMullin DR, Green BD, Miller JD (2015) Antifungal sesquiterpenoids and macrolides from an endophytic Lophodermium species of Pinus strobus. Phytochem Lett 14:148–152CrossRefGoogle Scholar
  40. McMullin DR, Green BD, Prince NC, Tanney JB, Miller JD (2017) Natural products of Picea endophytes from the Acadian forest. J Nat Prod 80(5):1475–1483CrossRefPubMedGoogle Scholar
  41. Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106(4):471–479CrossRefGoogle Scholar
  42. Minnis AM, Kennedy AH, Grenier DB, Palm ME, Rossman AY (2012) Phylogeny and taxonomic revision of the Planistromellaceae including its coelomycetous anamorphs: contributions towards a monograph of the genus Kellermania. Persoonia 29:11–28CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nguyen HD, Nickerson NL, Seifert KA (2013) Basidioascus and Geminibasidium: a new lineage of heat-resistant and xerotolerant basidiomycetes. Mycologia 105(5):1231–1250CrossRefPubMedGoogle Scholar
  44. Oono R, Lefèvre E, Simha A, Lutzoni F (2015) A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol 119(10):917–928CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pavlic D, Wingfield MJ, Barber P, Slippers B, Hardy GE, Burgess TI (2008) Seven new species of the Botryosphaeriaceae from baobab and other native trees in Western Australia. Mycologia 100(6):851–866CrossRefPubMedGoogle Scholar
  46. Pavlic D, Slippers B, Coutinho TA, Wingfield MJ (2009) Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex. Mol Phylogenet Evol 51(2):259–268CrossRefPubMedGoogle Scholar
  47. Pérez CA, Wingfield MJ, Slippers B, Altier NA, Blanchette RA (2010) Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native Myrtaceae trees in Uruguay. Fungal Divers 41(1):53–69CrossRefGoogle Scholar
  48. Phillips AJ, Alves A (2009) Taxonomy, phylogeny, and epitypification of Melanops tulasnei, the type species of Melanops. Fungal Divers 38:155–166Google Scholar
  49. Phillips A, Alves A, Correia A, Luque J (2005) Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia 97(2):513–529CrossRefPubMedGoogle Scholar
  50. Phillips AJ, Alves A, Pennycook SR, Johnston PR, Ramaley A, Akulov A, Crous PW (2008) Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia 21(1):29–55CrossRefPubMedPubMedCentralGoogle Scholar
  51. Phillips AJ, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW (2013) The Botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167CrossRefPubMedPubMedCentralGoogle Scholar
  52. Quaedvlieg W, Verkley GJ, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Stud Mycol 75:307–390CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using tracer 1.7. Syst Biol syy032.  https://doi.org/10.1093/sysbio/syy032
  54. Rehner SA, Buckley EA (2005) Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1):84–98PubMedGoogle Scholar
  55. Richardson SN, Nsiama TK, Walker AK, McMullin DR, Miller JD (2015) Antimicrobial dihydrobenzofurans and xanthenes from a foliar endophyte of Pinus strobus. Phytochemistry 117:436–443CrossRefPubMedGoogle Scholar
  56. Rodríguez-Gálvez E, Guerrero P, Barradas C, Crous PW, Alves A (2017) Phylogeny and pathogenicity of Lasiodiplodia species associated with dieback of mango in Peru. Fungal Biol 121(4):452–465CrossRefPubMedGoogle Scholar
  57. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sakalidis ML, Hardy GES, Burgess TI (2011a) Class III endophytes, clandestine movement amongst hosts and habitats and their potential for disease; a focus on Neofusicoccum australe. Australas Plant Pathol 40(5):510–521CrossRefGoogle Scholar
  59. Sakalidis ML, Hardy GES, Burgess TI (2011b) Endophytes as potential pathogens of the baobab species Adansonia gregorii: a focus on the Botryosphaeriaceae. Fungal Ecol 4(1):1–14CrossRefGoogle Scholar
  60. Samson RA, Houbracken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, UtrechtGoogle Scholar
  61. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(09):996–1004CrossRefGoogle Scholar
  62. Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21(2):90–106CrossRefGoogle Scholar
  63. Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ (2004) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96(1):83–101CrossRefPubMedGoogle Scholar
  64. Slippers B, Johnson GI, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ (2005) Phylogenetic and morphological re-evaluation of the Botryosphaeria species causing diseases of Mangifera indica. Mycologia 97(1):99–110CrossRefPubMedGoogle Scholar
  65. Slippers B, Boissin E, Phillips A, Groenewald J, Lombard L, Wingfield M, Postma A, Burgess T, Crous P (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud Mycol 76:31–49CrossRefPubMedPubMedCentralGoogle Scholar
  66. Slippers B, Roux J, Wingfield MJ, Van der Walt FJ, Jami F, Mehl JW, Marais GJ (2014) Confronting the constraints of morphological taxonomy in the Botryosphaeriales. Persoonia 33:155–168CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stadler M (2015) Biologically active secondary metabolites from epiphytic and endophytic fungi. Planta Med 81(11):IL62CrossRefGoogle Scholar
  68. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  69. Stanosz G, Smith D, Leisso R (2007) Diplodia shoot blight and asymptomatic persistence of Diplodia pinea on or in stems of jack pine nursery seedlings. For Pathol 37(3):145–154CrossRefGoogle Scholar
  70. Sumarah MW, Puniani E, Blackwell BA, Miller JD (2008) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71(8):1393–1398CrossRefPubMedGoogle Scholar
  71. Tanney JB, Seifert KA (2017) Lophodermium resinosum sp. nov. from red pine (Pinus resinosa) in eastern Canada. Botany 95(8):773–784CrossRefGoogle Scholar
  72. Tanney JB, Douglas B, Seifert KA (2016a) Sexual and asexual states of some endophytic Phialocephala species of Picea. Mycologia 108(2):255–280CrossRefPubMedGoogle Scholar
  73. Tanney JB, Mcmullin DR, Green BD, Miller JD, Seifert KA (2016b) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol 120(11):1448–1457CrossRefPubMedGoogle Scholar
  74. Tanney JB, McMullin DR, Miller JD (2018a) Toxigenic foliar endophytes from the Acadian forest. In: Frank AC, Pirttilä AM (eds) Endophytes of forest trees: biology and applications Volume II. Springer Forestry Series, ChamGoogle Scholar
  75. Tanney JB, Renaud J, Miller JD, McMullin D (2018b) New 1,3-benzodioxin-4-ones from Synnemapestaloides ericacearum sp. nov., a biosynthetic link to remarkable compounds within the Xylariales. PLoS One 13(6):e0198321CrossRefPubMedPubMedCentralGoogle Scholar
  76. Thambugala KM, Daranagama DA, Camporesi E, Singtripop C, Liu ZY, Hyde KD (2014) Multi-locus phylogeny reveals the sexual state of Tiarosporella in Botryosphaeriaceae. Cryptogam Mycol 35(4):359–367CrossRefGoogle Scholar
  77. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids 44(W1):W232–W235CrossRefGoogle Scholar
  78. Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva PA, Fernández N, Escobar JM, Moretto A (2017) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214(3):913–919CrossRefPubMedGoogle Scholar
  79. U'Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99(5):898–914CrossRefPubMedGoogle Scholar
  80. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246CrossRefPubMedPubMedCentralGoogle Scholar
  81. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CH, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wang YU, Guo LD, Hyde KD (2005) Taxonomic placement of sterile morphotypes of endophytic fungi from Pinus tabulaeformis (Pinaceae) in Northeast China based on rDNA sequences. Fungal Divers 20:235–260Google Scholar
  83. Weiland J, Sniezko R, Wiseman M, Serdani M, Putnam M (2016) First report of Phaeobotryon cupressi causing canker of Calocedrus decurrens (incense-cedar) in Oregon. Plant Dis 100(8):1793CrossRefGoogle Scholar
  84. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 315–322Google Scholar
  85. Wyka SA, Broders KD (2016) The new family Septorioideaceae, within the Botryosphaeriales and Septorioides strobi as a new species associated with needle defoliation of Pinus strobus in the United States. Fungal Biol 120(8):1030–1040CrossRefPubMedGoogle Scholar
  86. Yang T, Groenewald JZ, Cheewangkoon R, Jami F, Abdollahzadeh J, Lombard L, Crous PW (2017) Families, genera, and species of Botryosphaeriales. Fungal Biol 121(4):322–346CrossRefPubMedGoogle Scholar
  87. Yoo JJ, Eom AH (2012) Molecular identification of endophytic fungi isolated from needle leaves of conifers in Bohyeon Mountain, Korea. Mycobiology 40(4):231–235CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zlatković M, Keča N, Wingfield MJ, Jami F, Slippers B (2016) Botryosphaeriaceae associated with the die-back of ornamental trees in the Western Balkans. Antonie Van Leeuwenhoek 109(4):543–564CrossRefPubMedGoogle Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Biodiversity (Mycology & Botany), Ottawa Research and Development CentreAgriculture and Agri-Food CanadaOttawaCanada
  2. 2.Department of BiologyCarleton UniversityOttawaCanada

Personalised recommendations