Mycological Progress

, Volume 18, Issue 1–2, pp 295–303 | Cite as

Repeated formation of correlated species in Tranzschelia (Pucciniales)

  • Markus SchollerEmail author
  • Matthias Lutz
  • M. Catherine Aime
Original Article


Heteroecism, or alternation between two unrelated hosts, is a widespread phenomenon among rust fungi (Pucciniales). In addition to heteroecism, rust fungi have evolved elaborate life cycles ranging from the five spore stages of macrocyclic species with many variations down to microcyclic species that may produce just two of these stages to complete their life cycles on a single host species. Considering the large number of nearly 8000 described rust fungi species and the high proportion that are host-alternating, heteroecism apparently is a successful strategy for these fungi, at least in terms of species diversity. However, the cost of maintaining a heteroecious strategy with respect to spore production and two different host plant species must be high. In Pucciniales, sister-species pairs that include one host-alternating (heteroecious) and one non-host-alternating (autoecious) species that share a common host are called correlated species. In this study, we tested Tranzschelia species for the existence of correlated species using molecular phylogenetic data. We reveal the presence of three pairs of correlated species within this single genus and suggest that this is a repeating process in the evolution of rust fungi. We show that a heteroecious macrocyclic strategy can be the starting point for deriving microcyclic autoecious species. The high cost of host alternation may be compensated by the fact that it is a facultative process in Tranzschelia with numerous strategies for the species to persist in one or the other host or as overwintering spore. Consequently, the advantage of host alternation seems higher than the cost of (facultative) heteroecism.


Facultative heteroecism Life cycle Rust fungi Species diversity Tranzschel’s Law Uredinales 



We thank the curators of the public herbaria DAOM, GLM, IRAN, MIN and PUR and collectors (listed in Table 1) for providing specimens for this study.

Funding information

Molecular work was supported by the National Science Foundation Assembling the Tree of Life project (NSF DEB 0732968 to D. Hibbett and MCA), the Louisiana Board of Regents (MCA) and the German Barcode of Life (GBOL) project, supported by the German Federal Ministry of Education and Research (BMBF FKZ 01LI1501l to MS).


  1. Abbasi M, Aime MC (2015) Records of rust caused by Tranzschelia mexicana on black cherry (Prunus serotina) in the United States. Plant Dis 100:523CrossRefGoogle Scholar
  2. Aime MC (2006) Toward resolving family level relationships in rust fungi (Uredinales). Mycoscience 47:112–122CrossRefGoogle Scholar
  3. Aime MC, Bell CD, Wilson AW (2018) Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Stud Mycol 89:143–152CrossRefGoogle Scholar
  4. Arthur JC (1906) Eine auf die Struktur und Entwicklungsgeschichte begründete Klassifikation der Uredineen. Résultats Scientifiques du Congrès International de Botanique Vienne 1905:331–348Google Scholar
  5. Arthur JC (1921) New species of Uredineae – XIII. B Torrey Bot Club 48:31–42CrossRefGoogle Scholar
  6. Arthur JC (1929) The plant rusts (Urediniales). Wiley, HobokenGoogle Scholar
  7. Arthur JC (1934) Manual of the rusts in United States and Canada. Purdue Research Foundation, USAGoogle Scholar
  8. Bernaux P (1956) Contribution l’étude de la biologie des Gymnosporangium. Ann Épiphyt 1:1–210Google Scholar
  9. Berndt R (2012) Species richness, taxonomy and peculiarities of the neotropical rust fungi: are they more diverse in the Neotropics? Biodivers Conserv 21:2299–2322CrossRefGoogle Scholar
  10. Blomquist CL, Scholler M, Scheck HJ (2015) Detection of rust caused by Tranzschelia mexicana on Prunus salicifolia in the United States. Plant Dis 99:1856CrossRefGoogle Scholar
  11. Blumer S (1960) Untersuchungen über die Morphologie und Biologie von Tranzschelia pruni-spinosae (Pers.) Dietel und T. discolor (Fuck.) Tranz. et Litv. Phytopathol Z 38:355–388CrossRefGoogle Scholar
  12. Bruckart WL, Eskandari FM, Berner DK, Aime MC (2010) Life cycle of Puccinia acroptili on Rhaponticum (= Acroptilon) repens. Mycologia 102:62–68CrossRefGoogle Scholar
  13. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefGoogle Scholar
  14. Cummins GB (1959) Illustrated genera of rust fungi. Burgess Publishing Co., MinneapolisGoogle Scholar
  15. Cummins GB (1971) The rust fungi of cereals, grasses and bamboos. Springer, New YorkCrossRefGoogle Scholar
  16. De Bary A (1879) Aecidium abietum. Botanische Zeitung 37:48–52 761–774, 777–789, 801–811, 825–830, 841–847Google Scholar
  17. Deadman ML, Al Sadi AM, Al Maqbali YM, Al Subhi A, Al Yahya R, Aime MC (2007) First report of rust caused by Tranzschelia discolor on peach in Oman. Plant Dis 91:638CrossRefGoogle Scholar
  18. Dervis S, Dixon L, Doğanlar M, Rossman A (2010) Gall production on hawthorns caused by Gymnosporangium spp. in Hatay province, Turkey. Phytoparasitica 38(4):391–400CrossRefGoogle Scholar
  19. Dietel P (1897) Uredinales. In: Engler A, Prantl KA (eds) Die natürlichen Pflanzenfamilien. 1. Teil, Abt. 1. W. Engelmann, Leipzig, pp 24–81Google Scholar
  20. Dietel P (1899) Waren die Rostpilze in früheren Zeiten plurivor? Botanisches Centralblatt 79(81–85):113–117Google Scholar
  21. EPPO (2006) Gymnosporangium spp. (non-European). EPPO Bulletin 36:441–446CrossRefGoogle Scholar
  22. Farr DF, Rossman AY (2017) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved June 9, 2017, from
  23. Feau N, Vialle A, Allaiere M, Maier W, Hamelin RC (2011) DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia 103:1250–1266CrossRefGoogle Scholar
  24. Fischer E (1898) Entwicklungsgeschichtliche Untersuchungen über Rostpilze. Eine Vorarbeit zur monographischen Darstellung der schweizerischen Uredineen Beiträge zur Kryptogamenflora der Schweiz 1:1–121Google Scholar
  25. Fisher MC, Hanage WP, de Hoog S, Johnson E, Smith MD, White NJ (2005) Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Pathog 1:e20CrossRefGoogle Scholar
  26. Gatesy J, DeSalle R, Wheeler W (1993) Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Mol Phylogenet Evol 2:152–157CrossRefGoogle Scholar
  27. Giribet G, Wheeler WC (1999) On gaps. Mol Phylogenet Evol 13:132–143CrossRefGoogle Scholar
  28. Hennen JF, Buriticá P (1980) A brief summary of modern rust taxonomic and evolutionary theory. Rep Tottori Mycol Inst 18:243–256Google Scholar
  29. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688CrossRefGoogle Scholar
  30. Hylander N, Joerstad I, Nannfeldt A (1953) Enumeratio Uredinearum Scandinavicarum. Opera Botanica 1:1–102Google Scholar
  31. Jackson HS (1931) Present evolution tendencies and the origin of life cycles in the Uredinales. Memoirs of the Torrey Botanical Club 18:1–108Google Scholar
  32. Josifovič M (1953) Le role du stade écidien dans l’évolution de Tranzschelia pruni spinosae (Pers.) Diet. Bulletin, Casse des Sciences Mathematiques et Sciences Naturelles. Academie Serbe des Sciences et des Arts 7:223–235Google Scholar
  33. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  34. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. Cab International, OxonGoogle Scholar
  35. Klebahn H (1914) Uredineen. In: Dahlemer Botanischer Verein (ed) Kryptogamenflora der Mark Brandenburg, vol 5a. Bornträger, Leipzig, pp 69–946Google Scholar
  36. Klenke F, Scholler M (2015) Pflanzenparasitische Kleinpilze. Bestimmungsbuch für Brand-, Rost-, Mehltau-, Flagellatenpilze und Wucherlingsverwandte in Deutschland, Österreich, der Schweiz und Südtirol. Springer-Verlag, BerlinGoogle Scholar
  37. Leppik EE (1955) Evolution of angiosperms as mirrored in the phylogeny of rust fungi. Archivum Societatis Zoologicae Botanicae Fennicae “Vanamo” 9(suppl):159–160Google Scholar
  38. López-Franco RM, Hennen JF (1990) The genus Tranzschelia (Uredinales) in the Americas. Syst Bot 15:560–591CrossRefGoogle Scholar
  39. Maier W, Begerow D, Weiß M, Oberwinkler F (2005) Phylogeny of the rust fungi: an approach using nuclear large subunit ribosomal DNA sequences. Can J Bot 81:12–23CrossRefGoogle Scholar
  40. Malloch D (1995) Fungi with heteroxenous life histories. Can J Bot 73(Suppl):S1334–S1342CrossRefGoogle Scholar
  41. McTaggart AR, Shivas RG, van der Nest MA, Roux J, Wingfield BD, Wingfield MJ (2016) Host jumps shaped the diversity of extant rust fungi (Pucciniales). New Phytol 209:1149–1158CrossRefGoogle Scholar
  42. Meinecke EP (1916) Peridermium harknesii and Cronartium quercuum. Phytopathol 6:225–240Google Scholar
  43. Meinicke EP (1920) Facultative heteroecism in Peridermium cerebrum and Peridermium harknessii. Phytopathol 10:279–297Google Scholar
  44. Ono Y (1994) Tranzschelia asiatica sp. nov. and its taxonomic relationship to Tranzschelia arthurii. Can J Bot 72:1178–1186CrossRefGoogle Scholar
  45. Orton LR (1927) A working hypothesis on the origin of rusts, with special reference to the phenomenon of heteroecism. Bot Gaz 84:113–138CrossRefGoogle Scholar
  46. Peterson R (1961) On “facultative heteroecism”. Phytopathol 51:266–267Google Scholar
  47. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  48. Roy BA, Vogler DR, Bruns TD (1998) Cryptic species in the Puccinia monoica complex. Mycologia 90:846–853CrossRefGoogle Scholar
  49. Savile DBO (1968) The rusts of Chelonae (Scrophulariaceae): a study in the co-evolution of hosts and parasites. Nova Hedwigia 15:369–392Google Scholar
  50. Savile DBO (1976) Evolution of the rust fungi (Uredinales) as reflected by their ecological problems. Evol Biol 9:137–207Google Scholar
  51. Scholler M, Abbasi M, Friedrich F (2014) Tranzschelia in the Americas revisited: two new species and notes on the Tranzschelia thalictri complex. Mycologia 106:448–455CrossRefGoogle Scholar
  52. Schröter J (1889) Pilze. In: Cohn F (ed) Kryptogamen-Flora von Schlesien. Dritter Band, Zweite Hälfte. JU Kern’s Verlag (Max Müller), BreslauGoogle Scholar
  53. Shattock RC, Preece TF (2000) Tranzschel revisited: modern studies of the relatedness of different rust fungi confirm his law. Mycologist 14:113–117CrossRefGoogle Scholar
  54. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefGoogle Scholar
  55. Tranzschel W (1904) Über die Möglichkeit die Biologie wirtswechselnder Rostpilze auf Grund morphologischer Merkmale vorauszusehen. Arbeiten der Kaiserlichen St. Petersburger Naturforschenden Gesellschaft 35:311–313Google Scholar
  56. Urban Z, Markova J (2009) Catalogue of rust fungi of the Czech and Slovak Republics. Karolinum Press, Charles University, PragueGoogle Scholar
  57. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246CrossRefGoogle Scholar
  58. Vogler DR, Bruns TD (1998) Phylogenetic relationships among the pine stem rust fungi (Cronartium and Peridermium spp.). Mycologia 90:244–257CrossRefGoogle Scholar
  59. Wilson M, Henderson DM (1966) British rust fungi. University Press, CambridgeGoogle Scholar
  60. Zambino PJ, Szabo LJ (1993) Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia 85:401–414CrossRefGoogle Scholar
  61. Zwetko P (1990) Rostpilze (Uredinales) auf Carex im Ostalpenraum. Ein neues Artenkonzept. Bibliotheca Mycologica 153:1–222Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Markus Scholler
    • 1
    Email author
  • Matthias Lutz
    • 2
  • M. Catherine Aime
    • 3
  1. 1.Staatliches Museum für Naturkunde KarlsruheKarlsruheGermany
  2. 2.Plant Evolutionary Ecology, Institute of Evolution and EcologyUniversity of TübingenTübingenGermany
  3. 3.Department of Botany and Plant PathologyPurdue UniversityWest LafayetteUSA

Personalised recommendations