Mycological Progress

, Volume 17, Issue 8, pp 925–939 | Cite as

Fungal guilds are evenly distributed along a vertical spruce forest soil profile while individual fungi show pronounced niche partitioning

  • Derek PeršohEmail author
  • Nancy Stolle
  • Andreas Brachmann
  • Dominik Begerow
  • Gerhard Rambold
Original Article


Saprotrophic and ectomycorrhizal (EcM) forest fungi decompose organic matter and mobilize nutrients for host plants, respectively. Competition between the two guilds may cause the so-called Gadgil effect, i.e., decreased litter decomposition rates resulting in increased carbon storage in soil. The Gadgil effect was supposed to even affect global climate, highlighting the necessity to understand fungal distribution and interactions in soil. Searching for evidence of competition between saprotrophic and mycorrhizal fungi, we analyzed the distribution of fungi along a well-stratified vertical spruce forest soil profile in two seasons, i.e., autumn and the following spring. The different soil strata (i.e., two mineral horizons and two organic layers) underneath the litter layer were colonized by distinct fungal communities, which included roughly consistent proportions of all fungal guilds and phyla at each time. However, the community composition changed quantitatively between the sampling dates. Along the vertical soil profile, it differed mostly between the organic layers and the mineral soil, which is supposed to be due to differences in the predominant energy sources (i.e., aboveground litter and rhizodeposition, respectively). Network analyses revealed co-occurrences (i.e., positive correlations of individual abundances) to outweigh mutual exclusions (i.e., negative correlations) between individual fungi in each soil stratum and season. This also applied for interactions between saprotrophic and EcM fungi. Network analyses therefore provided no indications for a possible Gadgil effect. However, considering individual nutrient use efficiencies might refine insights from network analyses in future studies and facilitate linking community dynamics to ecosystem processes.


Ectomycorrhizal fungi Saprophytic fungi Co-occurrence networks Seasonal shifts 



We thank Dirk Böttger and Norbert Lamersdorf (both Göttingen) and our project partners (i.e., working groups of François Buscot, Halle; Georg Guggenberger, Hannover; Barbara Reinhold-Hurek, Bremen; Ellen Kandeler, Hohenheim) for help during the soil sampling and the good cooperation. Christopher Sadlowski (Bochum) supported the library preparation and Andrey Yurkov (Braunschweig) revised the molecular identification of the basidiomycetous yeasts.

The study was designed by DB, DP and GR. DP and GR performed the sampling. NS extracted the DNA and conducted preliminary analyses. AB and DP prepared the amplicon libraries. AB performed the sequencing. DP analyzed the data and wrote the manuscript. All authors discussed and contributed to the final version of the manuscript.

Funding information

The project was partly funded by the Deutsche Forschungsgemeinschaft (DFG-project RA 731/9-1).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11557_2018_1405_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)
11557_2018_1405_MOESM2_ESM.xls (28 kb)
ESM 2 (XLS 28 kb)
11557_2018_1405_MOESM3_ESM.xls (97 kb)
ESM 3 (XLS 97 kb)
11557_2018_1405_MOESM4_ESM.xls (148 kb)
ESM 4 (XLS 148 kb)
11557_2018_1405_MOESM5_ESM.xls (650 kb)
ESM 5 (XLS 649 kb)
11557_2018_1405_MOESM6_ESM.pdf (448 kb)
ESM 6 (PDF 447 kb)


  1. Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Progress 5:67–107. CrossRefGoogle Scholar
  2. Anderson IC, Genney DR, Alexander IJ (2014) Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a Scots pine forest. New Phytol 201:1423–1430. CrossRefPubMedGoogle Scholar
  3. Averill C, Hawkes CV (2016) Ectomycorrhizal fungi slow soil carbon cycling. Ecol Lett 19:937–947. CrossRefPubMedGoogle Scholar
  4. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545. CrossRefPubMedGoogle Scholar
  5. Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463. CrossRefPubMedGoogle Scholar
  6. Baldrian P (2008) Enzymes of saprotrophic basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) British Mycological Society Symposia Series : Ecology of Saprotrophic Basidiomycetes, Volume 28. Academic Press, pp 19–41Google Scholar
  7. Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Zifčáková L, Šnajdr J, Rídl J, Vlček C, Voříšková J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6:248–258. CrossRefPubMedGoogle Scholar
  8. Bálint M, Bahram M, Eren AM, Faust K, Fuhrman JA, Lindahl B, O’Hara RB, Öpik M, Sogin ML, Unterseher M, Tedersoo L (2016) Millions of reads, thousands of taxa. Microbial community structure and associations analyzed via marker genes. FEMS Microbiol Rev 40:686–700. CrossRefPubMedGoogle Scholar
  9. Berg B, McClaugherty C (2014) Plant Litter. Decomposition, humus formation, carbon sequestration, 3rd edn. Springer Berlin, HeidelbergGoogle Scholar
  10. Berg B, Staaf H (1980) Decomposition rate and chemical changes of scots pine needle litter. II. Influence of chemical composition. Ecol Bull 373–390Google Scholar
  11. Boddy L, Frankland JC, van West P (2008) Ecology of saprotrophic basidiomycetes. British Mycological Society symposium series, vol 28. Elsevier Academic Press, Amsterdam, LondonGoogle Scholar
  12. Bödeker ITM, Lindahl BD, Olson Å, Clemmensen KE (2016) Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct Ecol doi:
  13. Borken W, Kossmann G, Matzner E (2007) Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant Soil 292:79–93. CrossRefGoogle Scholar
  14. Braakhekke MC, Wutzler T, Beer C, Kattge J, Schrumpf M, Ahrens B, Schöning I, Hoosbeek MR, Kruijt B, Kabat P, Reichstein M (2013) Modeling the vertical soil organic matter profile using Bayesian parameter estimation. Biogeosciences 10:399–420. CrossRefGoogle Scholar
  15. Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016) Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Change 6:751–758CrossRefGoogle Scholar
  16. Bredemeier M, Blanck K, Dohrenbusch A, Lamersdorf N, Meyer AC, Murach D, Parth A, Xu Y-J (1998) The Solling roof project—site characteristics, experiments and results. For Ecol Manag 101:281–293. CrossRefGoogle Scholar
  17. Cairney JWG, Meharg AA (2002) Interactions between ectomycorrhizal fungi and soil saprotrophs. Implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can J Bot 80:803–809. CrossRefGoogle Scholar
  18. Cannon PF, Kirk PM (2007) Fungal families of the world. CABI, WallingfordCrossRefGoogle Scholar
  19. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth. 7:335–336. CrossRefGoogle Scholar
  20. Carreiro MM, Koske RE (1992) Room temperature isolations can bias against selection of low temperature microfungi in temperate forest soils. Mycologia 84:886. CrossRefGoogle Scholar
  21. Courty P-E, Franc A, Pierrat J-C, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535. CrossRefGoogle Scholar
  23. Dighton J (2007) Nutrient cycling by saprotrophic fungi in terrestrial habitats. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, vol 4. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 287–300Google Scholar
  24. Dix NJ, Webster J (1995) Fungal Ecology. Springer Netherlands, DordrechtCrossRefGoogle Scholar
  25. Dörr N, Kaiser K, Mikutta R, Guggenberger G (2010) Slow response of soil organic matter to the reduction in atmospheric nitrogen deposition in a Norway spruce forest. Glob Chang Biol 16.
  26. Enowashu E, Poll C, Lamersdorf N, Kandeler E (2009) Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil. Appl Soil Ecol 43:11–21. CrossRefGoogle Scholar
  27. FAO (1998) World reference base for soil resources. World soil resources reports, 0532-0488, vol 84. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  28. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Faust K, Lima-Mendez G, Lerat J-S, Sathirapongsasuti JF, Knight R, Huttenhower C, Lenaerts T, Raes J (2015) Cross-biome comparison of microbial association networks. Front Microbiol 6:1200. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fernandez CW, Kennedy PG (2016) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394. CrossRefPubMedGoogle Scholar
  31. Frankland JC (1998) Fungal succession—unravelling the unpredictable. Mycol Res 102:1–15CrossRefGoogle Scholar
  32. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133. CrossRefPubMedGoogle Scholar
  33. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. CrossRefPubMedGoogle Scholar
  34. Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD (2016) Microbial carbon use efficiency. Accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127:173–188. CrossRefGoogle Scholar
  35. Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Guerreiro MA, Brachmann A, Begerow D, Peršoh D (2017) Transient leaf endophytes are the most active fungi in 1-year-old beech leaf litter. Fungal Divers 89:237–251. CrossRefGoogle Scholar
  37. Havranek WM, Tranquillini W (1995) Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Roy J, Hinckley TM (eds) Ecophysiology of coniferous forests. Elsevier, pp 95–124Google Scholar
  38. Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67:837–874. CrossRefGoogle Scholar
  39. Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai Y-C, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu J-K, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo J-M, Ghobad-Nejhad M, Nilsson H, Pang K-L, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen T-C, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li W-J, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao R-L, Zhao Q, Kang J-C, Promputtha I (2015) The Faces of Fungi database. Fungal names linked with morphology, phylogeny and human impacts. Fungal Divers 74:3–18. CrossRefGoogle Scholar
  40. Johansson M-B, Kögel I, Zech W (1986) Changes in the lignin fraction of spruce and pine needle litter during decomposition as studied by some chemical methods. Soil Biol Biochem 18:611–619. CrossRefGoogle Scholar
  41. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere. Carbon trading at the soil–root interface. Plant Soil 321:5–33. CrossRefGoogle Scholar
  42. Kandeler E, Brune T, Enowashu E, Dörr N, Guggenberger G, Lamersdorf N, Philippot L (2009) Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiol Ecol 67:444–454. CrossRefPubMedGoogle Scholar
  43. Keiluweit M, Nico P, Harmon ME, Mao J, Pett-Ridge J, Kleber M (2015) Long-term litter decomposition controlled by manganese redox cycling. Proc Natl Acad Sci U S A 112:60. CrossRefGoogle Scholar
  44. Kendrick WB (1962) Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwigia 4:313–342Google Scholar
  45. Kirk PM, Cannon PF, Minter DW, Stalpers JA, Ainsworth GC, Bisby GR (2011) Ainsworth & Bisby’s dictionary of the fungi / by P.M. Kirk … [et al.] ; with the assistance of T.V. Andrianova [et al.], 10th ed. CABI Publishing, WallingfordGoogle Scholar
  46. Kögel-Knabner I (2016) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Fourteen years on Soil Biol Biochem
  47. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canback B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Dore J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Hogberg N, Johansson T, Khouja H-R, Labutti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. CrossRefPubMedGoogle Scholar
  48. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. CrossRefPubMedGoogle Scholar
  49. Kramer C, Trumbore S, Fröberg M, Cisneros Dozal LM, Zhang D, Xu X, Santos GM, Hanson PJ (2010) Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol Biochem 42:1028–1037. CrossRefGoogle Scholar
  50. Kuramae EE, Hillekens RHE, de Hollander M, van der Heijden MGA, van den Berg M, van Straalen NM, Kreyling J (2013) Structural and functional variation in soil fungal communities associated with litter bags containing maize leaf. FEMS Microbiol Ecol 84:519–531. CrossRefPubMedGoogle Scholar
  51. Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I (2016) Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol 7:1315. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Latter PM, Heal OW (1971) A preliminary study of the growth of fungi and bacteria from temperate and Antarctic soils in relation to temperature. Soil Biol Biochem 3:365–379. CrossRefGoogle Scholar
  53. Leppälammi-Kujansuu J, Aro L, Salemaa M, Hansson K, Kleja DB, Helmisaari H-S (2014) Fine root longevity and carbon input into soil from below- and aboveground litter in climatically contrasting forests. For Ecol Manag 326:79–90. CrossRefGoogle Scholar
  54. Li W, Fu L, Niu B, Wu S, Wooley J (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform 13:656–668. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. CrossRefPubMedGoogle Scholar
  56. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620. CrossRefPubMedGoogle Scholar
  57. Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL (2013) Practical innovations for high-throughput amplicon sequencing. Nat Meth. 10:999–1002. CrossRefGoogle Scholar
  58. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20. CrossRefPubMedGoogle Scholar
  59. Mainiero R, Kazda M, Schmid I (2010) Fine root dynamics in 60-year-old stands of Fagus sylvatica and Picea abies growing on haplic luvisol soil. Eur J Forest Res 129:1001–1009. CrossRefGoogle Scholar
  60. Miyamoto T, Igarashi T, Takahashi K (2000) Lignin-degrading ability of litter-decomposing basidiomycetes from Picea forests of Hokkaido. Mycoscience 41:105–110. CrossRefGoogle Scholar
  61. Moore JAM, Jiang J, Post WM, Classen AT (2015) Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model. Ecosphere 6:art29. CrossRefGoogle Scholar
  62. Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174CrossRefGoogle Scholar
  63. Mooshammer M, Wanek W, Hammerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014) Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:3694. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mujic AB, Durall DM, Spatafora JW, Kennedy PG (2016) Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi. New Phytol 209:1174–1183. CrossRefPubMedGoogle Scholar
  65. Nagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, Sun H, Yadav JS, Pangilinan J, Larsson K-H, Matsuura K, Barry K, Labutti K, Kuo R, Ohm RA, Bhattacharya SS, Shirouzu T, Yoshinaga Y, Martin FM, Grigoriev IV, Hibbett DS (2016) Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biol Evol 33:959–970. doi:
  66. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild. An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. CrossRefGoogle Scholar
  67. O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ota M, Nagai H, Koarashi J (2013) Root and dissolved organic carbon controls on subsurface soil carbon dynamics. A model approach. J Geophys Res Biogeosci 118:1646–1659. CrossRefGoogle Scholar
  69. Peršoh D (2013) Factors shaping community structure of endophytic fungi—evidence from the Pinus-Viscum-system. Fungal Divers 60:55–69. CrossRefGoogle Scholar
  70. Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25. CrossRefGoogle Scholar
  71. Peršoh D, Theuerl S, Buscot F, Rambold G (2008) Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J Microbiol Methods 75:19–24. CrossRefPubMedGoogle Scholar
  72. Peršoh D, Melcher M, Flessa F, Rambold G (2010) First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biol 114:585–596. CrossRefPubMedGoogle Scholar
  73. Peršoh D, Segert J, Zigan A, Rambold G (2013) Fungal community composition shifts along a leaf degradation gradient in a European beech forest. Plant Soil 362:175–186. CrossRefGoogle Scholar
  74. Persson HÅ, Stadenberg I (2010) Fine root dynamics in a Norway spruce forest (Picea abies (L.) Karst) in eastern Sweden. Plant Soil 330:329–344. CrossRefGoogle Scholar
  75. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ponge J-F (2005) Fungal communities: relation to resource succession. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem, 3rd ed. Taylor & Francis, Boca Raton, FLGoogle Scholar
  77. Qu L, Makoto K, Choi DS, Quoreshi AM, Koike T (2010) The role of ectomycorrhiza in boreal forest ecosystem. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems, vol 209. Springer Netherlands, Dordrecht, pp 413–425Google Scholar
  78. Röhl O, Graupner N, Peršoh D, Kemler M, Mittelbach M, Boenigk J, Begerow D (2017a) Flooding duration affects the structure of terrestrial and aquatic microbial eukaryotic communities. Microb Ecol
  79. Röhl O, Peršoh D, Mittelbach M, Elbrecht V, Brachmann A, Nuy J, Boenigk J, Leese F, Begerow D (2017b) Distinct sensitivity of fungal freshwater guilds to water quality. Mycol Progress 16:155–169. CrossRefGoogle Scholar
  80. Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783. CrossRefGoogle Scholar
  81. Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687. CrossRefPubMedGoogle Scholar
  82. Schneider CA, Rasband WS, Eliceiri KW (2012a) NIH Image to ImageJ. 25 years of image analysis. Nat Meth 9:671–675. CrossRefGoogle Scholar
  83. Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012b) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 6:1749–1762.; CrossRefPubMedPubMedCentralGoogle Scholar
  84. Smith SE, Read D (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  85. Šnajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppänen K, Baldrian P (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303. CrossRefPubMedGoogle Scholar
  86. Spielvogel S, Prietzel J, Leide J, Riedel M, Zemke J, Kögel-Knabner I (2014) Distribution of cutin and suberin biomarkers under forest trees with different root systems. Plant Soil 381:95–110. CrossRefGoogle Scholar
  87. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems, vol 5. Univ of California PressGoogle Scholar
  88. Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20. CrossRefGoogle Scholar
  89. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Partel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, L-d G, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, de KA, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science 1256688:346. CrossRefGoogle Scholar
  90. Theuerl S, Dörr N, Guggenberger G, Langer U, Kaiser K, Lamersdorf N, Buscot F (2010) Response of recalcitrant soil substances to reduced N deposition in a spruce forest soil: integrating laccase-encoding genes and lignin decomposition. FEMS Microbiol Ecol 73:166–177. PubMedCrossRefGoogle Scholar
  91. Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils. A review. Soil Biol Biochem 42:1200–1211. CrossRefGoogle Scholar
  92. Tibbett M, Cairney JWG (2007) The cooler side of mycorrhizas. Their occurrence and functioning at low temperatures. Can J Bot 85:51–62. CrossRefGoogle Scholar
  93. Timling I, Taylor DL (2012) Peeking through a frosty window. Molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5:419–429. CrossRefGoogle Scholar
  94. Tunlid A, Floudas D, Koide R, Rineau F (2016) Soil organic matter decomposition mechanisms in ectomycorrhizal fungi. In: Martin F (ed) Molecular mycorrhizal symbiosis. John Wiley & Sons, Inc, pp 257–275Google Scholar
  95. Voříšková J, Baldrian P (2012) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486. PubMedPubMedCentralCrossRefGoogle Scholar
  96. Voříšková J, Brabcová V, Cajthaml T, Baldrian P (2013) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201:269–278. PubMedCrossRefGoogle Scholar
  97. Vries Wd, Leeters EEJM (2001) Chemical composition of the humus layer, mineral soil and soil solution of 150 forest stands in the Netherlands in 1990. Alterra-rapport, vol 424.1. Alterra, Green World Research, WageningenGoogle Scholar
  98. Weete JD, Gandhi SR (1999) Sterols and fatty acids of the Mortierellaceae. Taxonomic implications. Mycologia 91:642. CrossRefGoogle Scholar
  99. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Elsevier, pp 315–322Google Scholar
  100. Yurkov A, Wehde T, Kahl T, Begerow D (2012a) Aboveground deadwood deposition supports development of soil yeasts. Diversity 4:453–474. CrossRefGoogle Scholar
  101. Yurkov AM, Kemler M, Begerow D (2012b) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5:24–35. CrossRefGoogle Scholar
  102. Yurkov AM, Röhl O, Pontes A, Carvalho C, Maldonado C, Sampaio JP (2016a) Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Res 16:fov103. CrossRefPubMedGoogle Scholar
  103. Yurkov AM, Wehde T, Federici J, Schäfer AM, Ebinghaus M, Lotze-Engelhard S, Mittelbach M, Prior R, Richter C, Röhl O, Begerow D (2016b) Yeast diversity and species recovery rates from beech forest soils. Mycol Progress 15:845–859. CrossRefGoogle Scholar
  104. Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR (2015) Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci U S A 112:6449–6454. CrossRefPubMedPubMedCentralGoogle Scholar
  105. Žifčáková L, Dobiášová P, Kolářová Z, Koukol O, Baldrian P (2011) Enzyme activities of fungi associated with Picea abies needles. Fungal Ecol 4:427–436. CrossRefGoogle Scholar
  106. Žifčáková L, Větrovský T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18:288–301. CrossRefPubMedGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ruhr-Universität Bochum, GeobotanikBochumGermany
  2. 2.Dianovis GmbHGreizGermany
  3. 3.Ludwig-Maximilians-Universität München, Fakultät für Biologie, GenetikPlanegg-MartinsriedGermany
  4. 4.Universität Bayreuth, MykologieBayreuthGermany

Personalised recommendations