Advertisement

Mycological Progress

, Volume 17, Issue 7, pp 841–853 | Cite as

Diaporthe from walnut tree (Juglans regia) in China, with insight of the Diaporthe eres complex

  • XinLei Fan
  • Qin Yang
  • Jadson D. P. Bezerra
  • Lourdes V. Alvarez
  • ChengMing Tian
Original Article
  • 138 Downloads

Abstract

Species of Diaporthe are important plant pathogenic fungi that commonly occur on a wide range of hosts. They are relatively difficult to identify due to their extreme similarity in morphology and confusing multigene phylogeny, especially in the Diaporthe eres complex. In the present study, isolates were collected from diseased branches of Juglans regia in China. Most strains were clustered into the D. eres species complex based on the combined internal transcribed spacer (ITS) region, partial calmodulin (CAL), histone H3 (HIS), translation elongation factor 1-alpha (TEF1-α) and beta-tubulin (TUB) genes. To focus on this complex, CAL, TEF1-α and TUB were selected in further phylogenetic analyses that showed a better topology compared with combined five-gene phylogeny. Results revealed that all strains which clustered in the Diaporthe eres complex from Juglans regia in China were Diaporthe eres. Results suggested a revised species criterion in the Diaporthe eres complex. The current study uncovered a new species here described as Diaporthe. tibetensis.

Keywords

Diaporthales Molecular phylogeny New species Species complex Taxonomy 

Notes

Acknowledgements

This study is financed by Fundamental Research Funds for the Central Universities (Project No.: BLX201613) and National Natural Science Foundation of China (Project No.: 31670647). CM Tian and XL Fan thank Chungen Piao, Minwei Guo (China Forestry Culture Collection Center (CFCC), Chinese Academy of Forestry, Beijing. JDP Bezerra thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) of Brazil for scholarships.

References

  1. Anagnostakis SL (2007) Diaporthe eres (Phomopsis oblonga) as a pathogen of butternut (Juglans cinerea) in Connecticut. Plant Dis 91:1198CrossRefGoogle Scholar
  2. Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155CrossRefPubMedGoogle Scholar
  3. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  4. Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94:1017–1031CrossRefPubMedGoogle Scholar
  5. Chepkirui C, Stadler M (2017) The genus Diaporthe: a rich source of diverse and bioactive metabolites. Mycol Prog 16:477–494CrossRefGoogle Scholar
  6. Crous PW, Groenewald JZ, Risède JM, Simoneau P, Hywel-Jones NL (2004a) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–430Google Scholar
  7. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004b) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22Google Scholar
  8. Desjardins P, Hansen JB, Allen M (2009) Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer. J Vis Exp (33):1–3Google Scholar
  9. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  10. Du Z, Fan XL, Hyde KD, Yang Q, Liang YM, Tian CM (2016) Phylogeny and morphology reveal two new species of Diaporthe from Betula spp. in China. Phytotaxa 269:90–102CrossRefGoogle Scholar
  11. Fan XL, Hyde KD, Udayanga D, Wu XY, Tian CM (2015a) Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycol Prog 14:1–8CrossRefGoogle Scholar
  12. Fan XL, Hyde KD, Liu M, Liang YM, Tian CM (2015b) Cytospora species associated with walnut canker disease in China, with description of a new species C. gigalocus. Fungal Biology 119:310–319CrossRefPubMedGoogle Scholar
  13. Gandev S (2007) Budding and grafting of the walnut (Juglans regia L.) and their effectiveness in Bulgaria (review). Bulgarian J Agric Sci 13:683–689Google Scholar
  14. Gao YH, Liu F, Cai L (2016) Unravelling Diaporthe species associated with Camellia. Syst Biodivers 14:102–117CrossRefGoogle Scholar
  15. Gao YH, Liu F, Duan WJ, Crous PW, Cai L (2017) Diaporthe is paraphyletic. IMA Fungus 8:153–187CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gao YH, Sun W, Su YY, Cai L (2014) Three new species of Phomopsis in Gutianshan Nature Reserve in China. Mycol Prog 13:111–121CrossRefGoogle Scholar
  17. Gao YH, Su Y, Sun W, Cai L (2015) Diaporthe species occurring on Lithocarpus glabra in China, with descriptions of five new species. Fungal Biology 119:295–309CrossRefPubMedGoogle Scholar
  18. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  19. Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia: Mol Phylogeny Evol Fungi 31:1–41CrossRefGoogle Scholar
  20. Guarnaccia V, Groenewald JZ, Woodhall J et al (2018) Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia 40:135–153Google Scholar
  21. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  22. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  23. Huang F, Udayanga D, Wang X, Hou X, Mei X, Fu Y, Hyde KD, Li H (2015) Endophytic Diaporthe associated with Citrus: a phylogenetic reassessment with seven new species from China. Fungal Biol 119:331–347CrossRefPubMedGoogle Scholar
  24. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900CrossRefPubMedPubMedCentralGoogle Scholar
  25. Martínez ML, Labuckas DO, Lamarque AL, Maestri DM (2010) Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agric 90:1959–1967PubMedGoogle Scholar
  26. Nitschke T (1870) Pyrenomycetes Germanici 2. Breslau, Eduard Trewendt, GermanyGoogle Scholar
  27. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  28. Rambaut A, Drummond A (2010) FigTree v.1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UKGoogle Scholar
  29. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311CrossRefPubMedGoogle Scholar
  30. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, LondonGoogle Scholar
  31. Rehner SA, Uecker FA (1994) Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Can J Bot 72:1666–1674CrossRefGoogle Scholar
  32. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  33. Santos JM, Correia VG, Phillips AJ (2010) Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol 114:255–270CrossRefPubMedGoogle Scholar
  34. Santos JM, Phillips AJL (2009) Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers 34:111–125Google Scholar
  35. Santos L, Alves A, Alves R (2017) Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ.  https://doi.org/10.7717/peerj.3120
  36. Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sunderland, England, UKGoogle Scholar
  37. Taha NA, Al-wadaan MA (2011) Utility and importance of walnut, Juglans regia Linn: a review. Afr J Microbiol Res 5:5796–5805Google Scholar
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tanney JB, Mcmullin DR, Green BD, Miller JD, Seifert KA (2016) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol 120:1448–1457CrossRefPubMedGoogle Scholar
  40. Tan YP, Edwards J, Grice KRE, Shivas RG (2013) Molecular phylogenetic analysis reveals six new species of Diaporthe from Australia. Fungal Divers 61:251–260CrossRefGoogle Scholar
  41. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32CrossRefPubMedGoogle Scholar
  42. Uecker FA (1988) A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycological Memoirs 13:1–231Google Scholar
  43. Udayanga D, Liu X, McKenzie EH, Chukeatirote E, Bahkali AH, Hyde KD (2011) The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 50:189–225CrossRefGoogle Scholar
  44. Udayanga D, Liu X, Crous PW, McKenzie EH, Chukeatirote E, Hyde KD (2012a) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers 56:157–171CrossRefGoogle Scholar
  45. Udayanga D, Liu X, Mckenzie EH, Chukeatirote E, Hyde KD (2012b) Multi-locus phylogeny reveals three new species of Diaporthe from Thailand. Cryptogam Mycol 33:295–309CrossRefGoogle Scholar
  46. Udayanga D, Castlebury LA, Rossman AY, Hyde KD (2014a) Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia: Mol Phylogeny Evol Fungi 32:83–101CrossRefGoogle Scholar
  47. Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014b) Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Divers 67:203–229CrossRefGoogle Scholar
  48. Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2015) The Diaporthe sojae species complex: phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biology 119:383–407CrossRefPubMedGoogle Scholar
  49. Voglmayr H, Castlebury LA, Jaklitsch WM (2017) Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales). Persoonia 38:136–155CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wehmeyer LE (1933) The genus Diaporthe Nitschke and its segregates. Univ Mich Student Sci Serv 9:1–349Google Scholar
  51. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. San Diego, USAGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • XinLei Fan
    • 1
  • Qin Yang
    • 1
  • Jadson D. P. Bezerra
    • 2
  • Lourdes V. Alvarez
    • 3
  • ChengMing Tian
    • 1
  1. 1.The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
  2. 2.Departamento de Micologia Prof. Chaves BatistaUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Department of Biology, College of SciencePolytechnic University of the PhilippinesManilaPhilippines

Personalised recommendations