Mycological Progress

, Volume 17, Issue 6, pp 755–771 | Cite as

Novel Collophorina and Coniochaeta species from Euphorbia polycaulis, an endemic plant in Iran

  • Shaghayegh NasrEmail author
  • Steffen Bien
  • Mohammad Reza Soudi
  • Nayyereh Alimadadi
  • Seyed Abolhassan Shahzadeh Fazeli
  • Ulrike Damm
Original Article


During a study on the biodiversity of yeasts and yeast-like ascomycetes from wild plants in Iran, four strains of yeast-like filamentous fungi were isolated from a healthy plant of Euphorbia polycaulis in the Qom Province, Iran (IR. of). All four strains formed small hyaline one-celled conidia from integrated conidiogenous cells directly on hyphae and sometimes on discrete phialides, as well as by microcyclic conidiation. Two strains additionally produced conidia in conidiomata that open by rupture. The internal transcribed spacer (ITS) sequences suggested the placement of these strains in the genera Collophorina (Leotiomycetes) and Coniochaeta (Sordariomycetes), respectively. Blast search results on NCBI GenBank and phylogenetic analyses of ITS, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the translation elongation factor 1α (EF-1α) sequences, and the nuclear large subunit ribosomal gene (LSU), partial actin (ACT), and β-tubulin (TUB) sequences, respectively, revealed the isolates to belong to three new species, that are described here as Collophorina euphorbiae, Coniochaeta iranica, and C. euphorbiae. All three species are characterised by morphological, physiological, and molecular data.


Lecythophora Morphological characterisation Multi-locus sequence analysis Phylogeny Systematics 



The authors would like to thank Dr. Hamid Moazzeni of Department of Plant Biology of Iranian Biological Resource Center for identification of plant material.

Funding information

We gratefully acknowledge the financial support from the Iranian Biological Resource Center (IBRC), ACECR, which was provided to us by Mohammad Ali Amoozegar (Head of Department).

Compliance with ethical standards

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. Aghdam SA, Fotouhifar KB (2016) New reports of endophytic fungi associated with cherry (Prunus avium) and sour cherry (Prunus cerasus) trees in Iran. Mycol Iran 3:75–85Google Scholar
  2. Arzanlou M, Ghasemi S, Bagheri MB (2016) Collophora hispanica, a new pathogen and potential threat to the almond industry in Iran. J Phytopathol 164:833–839CrossRefGoogle Scholar
  3. Asgari B, Zare R (2006) Two new Coniochaeta species from Iran. Nova Hedwigia 82:227–236CrossRefGoogle Scholar
  4. Asgari B, Zare R, Gams W (2007) Coniochaeta ershadii, a new species from Iran, and a key to well-documented Coniochaeta species. Nova Hedwigia 84:175–187CrossRefGoogle Scholar
  5. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  6. Chang JH, Wang YZ (2011) Taxonomy of Coniochaeta leucoplaca and C. velutina: morphological and molecular studies based on LSU rDNA of isolates from Taiwan. Nova Hedwigia 92:57–67CrossRefGoogle Scholar
  7. Checa J, Barrasa JM, Moreno G et al (1988) The genus Coniochaeta (Sacc.) Cooke (Coniochaetaceae, Ascomycotina) in Spain. Cryptogam Mycol 9:1–34Google Scholar
  8. Checa J, Arenal F, Blanco N, Rogers JD (2008) Coniolariella hispanica sp. nov. and other additions to Coniolariella. Mycol Res 112:795–801CrossRefPubMedGoogle Scholar
  9. Cooke MC (1887) New Australian fungi. Grevillea 16(77):1–6Google Scholar
  10. Crous PW, Gams W, Stalpers JA et al (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22Google Scholar
  11. Crous PW, Verkleij GJM, Groenewald JZ, Samson RA (eds) (2009) Fungal biodiversity, CBS laboratory manual series, vol 1. Centraalbureau voor Schimmelcultures, UtrechtGoogle Scholar
  12. Cruse M, Telerant R, Gallagher T, Lee T, Taylor JW (2002) Cryptic species in Stachybotrys chartarum. Mycologia 94:814–822CrossRefPubMedGoogle Scholar
  13. Damm U, Crous PW, Fourie PH (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora spp. nov. Mycologia 99:664–680CrossRefPubMedGoogle Scholar
  14. Damm U, Fourie PH, Crous PW (2010) Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees. Persoonia 24:60–80CrossRefPubMedPubMedCentralGoogle Scholar
  15. Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Lima Brossi MJ, Jimenez DJ, Cortes-Tolalpa L, van Elsas JD (2016) Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microb Ecol 71:616–627CrossRefPubMedGoogle Scholar
  17. DeVries RE, Trigiano RN, Windham MT, Windham AS, Sorochan JC, Rinehart TA, Vargas JM (2008) Genetic analysis of fungicide-resistant Sclerotinia homoeocarpa isolates from Tennessee and Northern Mississippi. Plant Dis 92:83–90CrossRefGoogle Scholar
  18. Ellwood SR, Syme RA, Moffat CS, Oliver RP (2012) Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA. Fungal Genet Biol 49:825–829CrossRefPubMedGoogle Scholar
  19. Eriksson OE (1992) Non-lichenized pyrenomycetes in Sweden. Lund, SwedenGoogle Scholar
  20. Farr DF, Rossman AY (2017) Fungal databases, U.S. National Fungus Collections, ARS, USDA. Retrieved November 14 (2017) from
  21. Fischer M, Schneider P, Kraus C, Molnar M, Dubois C, d’Aguiar D, Haag N (2016) Grapevine trunk disease in German viticulture: occurrence of lesser known fungi and first report of Phaeoacremonium viticola and P. fraxinopennsylvanicum. Vitis 55:145–156Google Scholar
  22. Friebes G, Jaklitsch WM, Garcia S, Voglmayr H (2016) Lopadostoma taeniosporum revisited and a new species of Coniochaeta. Sydowia 68:87–97Google Scholar
  23. Gams W, McGinnis MR (1983) Phialemonium, a new anamorph genus intermediate between Phialophora and Acremonium. Mycologia 75:977–987CrossRefGoogle Scholar
  24. Garcia Benavides P, Martin Zamorano P, Ocete Perez CA, Maistrello L, Ocete Rubio R (2013) Biodiversity of pathogenic wood fungi isolated from Xylotrechus arvicola (Olivier) galleries in vine shoots. Journal International des Sciences de la Vigne et du Vin 47:73–81Google Scholar
  25. García D, Stchigel AM, Cano J et al (2006) Molecular phylogeny of Coniochaetales. Mycol Res 110:1271–1289CrossRefPubMedGoogle Scholar
  26. Geydan TD, Debets AJ, Verkley GJ, Van Diepeningen AD (2012) Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Mol Ecol 21:281–2828CrossRefGoogle Scholar
  27. Gierland L, Fischer M (2017) Grapevine trunk disease in German viticulture II. Associated fungi occurring on non-Vitis hosts, and first report of Phaeoacremonium angustius. Vitis 56:103–110Google Scholar
  28. Gilgado F, Cano J, Gené J, Guarro J (2005) Molecular phylogeny of the Pseudallescheria boydii species complex: proposal of two new species. J Clin Microbiol 43:4930–4942CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gramaje D, Agustí-Brisach C, Pérez-Sierra A, Moralejo E, Olmo D, Mostert L, Damm U, Armengol J (2012) Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia 28:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guerber JC, Liu B, Correll JC (2003) Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872–895CrossRefPubMedGoogle Scholar
  31. Hanna M, Xiao W (2006) Isolation of nucleic acids. In: Xiao W (ed). Yeast protocols. Humana Press, Methods Mol Biol 313. pp 15–20Google Scholar
  32. Hawksworth DL, Yip HY (1981) Coniochaeta angustispora sp. nov. from roots in Australia with a key to the species known in culture. Aust J Bot 29:377–384CrossRefGoogle Scholar
  33. van Heerden A, van Zyl WH, Cruywagen CW et al (2011) The lignicolous fungus Coniochaeta pulveracea and its interactions with syntrophic yeasts from the woody phylloplane. Microb Ecol 62:609–619CrossRefPubMedGoogle Scholar
  34. Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344CrossRefPubMedGoogle Scholar
  35. Hoffmann K, Discher S, Voigt K (2007) Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycol Res 111:1169–1183CrossRefPubMedGoogle Scholar
  36. de Hoog GS, Guarro J, Gené J, Figueras MJ (eds) (2000) Atlas of clinical fungi, 2nd ed. Centraalbureau voor Schimmelcultures, UtrechtGoogle Scholar
  37. Huhndorf SM, Miller AN, Fernández FA (2004) Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia 96:368–387CrossRefPubMedGoogle Scholar
  38. Jiménez DJ, Korenblum E, van Elsas JD (2014) Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl Microbiol Biotechnol 98:2789–2803CrossRefPubMedGoogle Scholar
  39. Jorstad I (1960) Iranian plants collected by Per Wendelbo in 1959. II. Uredinales and some other parasitic fungi. Årbok for Universitetet i Bergen, Matematisk-naturvitenskapelig Serie 11. Norwegian universities Press, Oslo, 33 pp.Google Scholar
  40. Kamiya S, Uchiyama S, Udagawa S (1995) Two new species of Coniochaeta with a cephalothecoid peridium wall. Mycoscience 36:377–383CrossRefGoogle Scholar
  41. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  42. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Marcowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  44. Khan Z, Gené J, Ahmad S et al (2013) Coniochaeta polymorpha, a new species from endotracheal aspirate of a preterm neonate, and transfer of Lecythophora species to Coniochaeta. Antonie Van Leeuwenhoek 104:243–252CrossRefPubMedGoogle Scholar
  45. Kokaew J, Manoch L, Worapong J, Chamswarng C, Singburaudom N, Visarathanonth N, Piasai O, Strobel G (2011) Coniochaeta ligniaria an endophytic fungus from Baeckea frutescensand its antagonistic effects against plant pathogenic fungi. Thai J Agric Sci 44:123–131Google Scholar
  46. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  47. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73(4):331-71Google Scholar
  48. Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954CrossRefPubMedGoogle Scholar
  49. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, 5th edn. Elsevier, AmsterdamGoogle Scholar
  50. López MJ, Vargas-Garcia MC, Suarez-Estrella F, Nichols NN, Dien BS, Moreno J (2007) Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzym Microb Technol 40:794–800CrossRefGoogle Scholar
  51. López-Archilla AI, Gonzáles AE, Terrón MC, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934CrossRefPubMedGoogle Scholar
  52. Mahoney DP, LaFavre JS (1981) Coniochaeta extramundana, with a synopsis of other Coniochaeta species. Mycologia 73:931–952CrossRefGoogle Scholar
  53. Malloch D, Cain RF (1971) New cleistothecial Sordariaceae and a new family, Coniochaetaceae. Can J Bot 49:869–880CrossRefGoogle Scholar
  54. Massimo NC, Nandi Devan MM, Arendt KR, Wilch MH, Riddle JM, Furr SH, Steen C, U'Ren JM, Sandberg DC, Arnold AE (2015) Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb Ecol 70:61–76CrossRefPubMedPubMedCentralGoogle Scholar
  55. McNeill J, Barrie FR, Buck WR, et al. (2015) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011; Appendices II–VIII.
  56. Melin E, Nannfeldt JA (1934) Researches into the blueing of ground wood pulp. Svenska Skogsvårdsföreningens Tidskrift 32:397–616Google Scholar
  57. Miller AN, Huhndorf SM (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Mol Phylogenet Evol 35:60–75CrossRefPubMedGoogle Scholar
  58. Nirenberg HI (1976) Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 169: 1–117Google Scholar
  59. O’Donnell K (1993) Fusarium and its nearly relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, WallingfordGoogle Scholar
  60. Olmo D, Armengol J, Leon M, Gramaje D (2015) Pathogenicity testing of lesser-known fungal trunk pathogens associated with wood decay of almond trees. Eur J Plant Pathol 143:607–611CrossRefGoogle Scholar
  61. Pahlevani AH, Maaroofi H, Joharchi MR (2011) Notes on six endemic or rare species of Euphorbia subg. Esula (Euphorbiaceae) in Iran. Willdenowia 41:267–276CrossRefGoogle Scholar
  62. Panaccione DG, Hanau RM (1990) Characterization of two divergent beta-tubulin genes from Colletotrichum graminicola. Gene 86:163–170CrossRefPubMedGoogle Scholar
  63. Perdomo H, García D, Gené J et al (2013) Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora. Mycologia 105:398–421CrossRefPubMedGoogle Scholar
  64. Raja HA, Shearer CA, Raja HA et al (2012) Freshwater ascomycetes: Coniochaeta gigantospora sp. nov. based on morphological and molecular data. Mycoscience 53:373–380CrossRefGoogle Scholar
  65. Ravindran A, Adav SS, Sze SK (2012) Characterization of extracellular lignocellulolytic enzymes of Coniochaeta sp. during corn stover bioconversion. Process Biochem 47:2440–2448CrossRefGoogle Scholar
  66. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, KewGoogle Scholar
  67. Reblova M, Winka K (2000) Phylogeny of Chaetosphaeria and its anamorphs based on morphological and molecular data. Mycologia 92:939–954CrossRefGoogle Scholar
  68. Rehner S (2001) Primers for elongation factor 1-a (EF1-a).
  69. Rosa LH, Queiroz SN, Moraes RM, Wang X, Techen N, Pan Z, Cantrell CL, Wedge DE (2013) Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic tissue cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae). Symbiosis 60:133–142CrossRefGoogle Scholar
  70. Saccardo PA (1882) Sylloge fungorum 1: i–xviii, 1-768. Italy, Padua; P.A. SaccardoGoogle Scholar
  71. Samson RA, Hoekstra ES, Frisvad JC (eds) (2004) Introduction to food- and airborne fungi. CBS, UtrechtGoogle Scholar
  72. Sandberg DC, Battista LJ, Arnold AE (2014) Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure. Microb Ecol 67:735–747CrossRefPubMedPubMedCentralGoogle Scholar
  73. Smith D, Onions AHS (1983) The preservation and maintenance of living fungi. Commonwealth Mycological Institute, KewGoogle Scholar
  74. Spadaro D, Pellegrino C, Garibaldi A, Gullino ML (2011) Development of SCAR primers for the detection of Cadophora luteo-olivacea on kiwifruit and pome fruit and of Cadophora malorum on pome fruit. Phytopathol Mediterr 50:430–441Google Scholar
  75. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedPubMedCentralGoogle Scholar
  76. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  77. Troy GC, Panciera DL, Pickett JP et al (2013) Mixed infection caused by Lecythophora canina sp. nov. and Plectosphaerella cucumerina in a German shepherd dog. Med Mycol 51:455–460CrossRefPubMedGoogle Scholar
  78. Udagawa S, Sugiyama S (1982) New records and new species of ascomycetous microfungi from Nepal, a preliminary report on the expedition of 1980. Reports on the cryptogamic study in Nepal, Mar 1982. Tokyo: Miscellaneous Publications of the Natural Science Museum: 11–46Google Scholar
  79. Vázquez-Campos X, Kinsela AS, Waite TD et al (2014) Fodinomyces uranophilus gen. nov. sp. nov. and Coniochaeta fodinicola sp. nov., two uranium mine inhabiting Ascomycota Fungi from northern Australia. Mycologia 106:1073–1089CrossRefPubMedGoogle Scholar
  80. Weber E (2002) The Lecythophora-Coniochaeta complex: I. Morphological studies on Lecythophora species isolated from Picea abies. Nova Hedwigia 74:159–185CrossRefGoogle Scholar
  81. Weber E, Görke C, Begerow D (2002) The Lecythophora-Coniochaeta complex: II. Molecular studies based on sequences of the large subunit of ribosomal DNA. Nova Hedwigia 74:187–200CrossRefGoogle Scholar
  82. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 315–322Google Scholar
  83. Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, Lücking R, Kurtzman CP, Yurkov A, Haelewaters D, Aptroot A, Lumbsch HT, Timdal E, Ertz D, Etayo J, Phillips AJL, Groenewald JZ, Papizadeh M, Selbmann L, Dayarathne MC, Weerakoon G, Jones EBG, Suetrong S, Tian Q, Castañeda-Ruiz RF, Diederich P, Pang K-L, Tanaka K, Dai DQ, Sakayaroj J, Hujslová M, Lombard L, Shenoy BD, Suija A, Maharachchikumbura SSN, Thambugala KM, Wanasinghe DN, Sharma BO, Gaikwad S, Pandit G, Zucconi L, Onofri S, Egidi E, Raja HA, Kodsueb R, Cáceres MES, Pérez-Ortega S, Fiuza PO, Monteiro SS, Vasilyeva LN, Shivas RG, Prieto M, Wedin M, Olariaga I, Lateef AA, Agrawal Y, Fazeli SAS, Amoozegar MA, Zhao GZ, Pfliegler WP, Sharma G, Oset M, Abdel-Wahab MA, Takamatsu S, Bensch K, deSilva NI, DeKesel A, Karunarathna A, Boonmee S, Pfister DH, Lu Y-Z, Luo Z-L, Boonyuen N, Daranagama DA, Senanayake IC, Jayasiri SC, Samarakoon MC, Zeng X-Y, Doilom M, Quijada L, Rampadarath S, Heredia G, Dissanayake AJ, Jayawardana R, Perera RH, Tang LZ, Phukhamsakda C, Hernández-Restrepo M, Ma X, Tibpromma S, Gusmao LFP, Bahkali AH, Weerahewa D, Karunarathna S (2017) Notes for genera – Ascomycota. Fungal Divers 86:1–594CrossRefGoogle Scholar
  84. Wood AR, Damm U, van der Linde EJ, Groenewald JZ, Cheewangkoon R, Crous PW (2016) Finding the missing link: resolving the Coryneliomycetidae within Eurotiomycetes. Persoonia 37:27–56CrossRefGoogle Scholar
  85. Woudenberg JHC, Aveskamp MM, de GJ et al (2009) Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22:56–62CrossRefPubMedPubMedCentralGoogle Scholar
  86. Xie J, Strobel J, Mends MT, Hilmer J, Nigg J, Geary B (2013) Collophora aceris, a novel antimycotic producing endophyte associated with douglas maple. Microb Ecol 66:784–795CrossRefPubMedGoogle Scholar
  87. Xie J, Strobel GA, Feng T, Ren H, Mends MT, Zhou Z, Geary B (2015) An endophytic Coniochaeta velutina producing broad spectrum antimycotics. J Microbiol 53:390–397CrossRefPubMedGoogle Scholar
  88. Yokoyama T, Ito T (1988) A new species of Coniochaeta from Japanese soils. Trans Mycol Soc Jpn 29:319–322Google Scholar
  89. Yurkewich JI, Castaño C, Colinas C (2017) Chestnut red stain: identification of the fungi associated with the costly discolouration of Castanea sativa. For Pathol 00:e12335. CrossRefGoogle Scholar
  90. Zare R, Asgari B, Gams W (2010) The species of Coniolariella. Mycologia 102:1383–1388CrossRefPubMedGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microorganisms Bank, Iranian Biological Resource Center (IBRC), ACECRTehranIran
  2. 2.Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
  3. 3.Senckenberg Museum of Natural History GörlitzGörlitzGermany
  4. 4.Department of Microbiology, Faculty of Biological SciencesAlzahra UniversityTehranIran
  5. 5.Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran

Personalised recommendations