Advertisement

Mycological Progress

, Volume 18, Issue 3, pp 405–414 | Cite as

Four new species of Hydnobolites (sequestrate Pezizaceae, Ascomycota) from China

  • Ting Li
  • Meng Chen
  • Yu-Yan Xu
  • Li FanEmail author
Original Article

Abstract

Four new species Hydnobolites canaliculatus, Hydnobolites roseus, Hydnobolites shanxiensis, and Hydnobolites yunnanensis are described from China. Morphologically, H. canaliculatus is characterized by the large, strongly folded ascomata and canal-like gleba; H. roseus is distinguished from other Hydnobolites species by its small and pink-white or yellow-white ascomata, usually with distinct rose tints; H. shanxiensis is diagnosed by the small, light yellow-brown ascomata, and ascospores ornamented with alveolate-reticulum with deep meshes; H. yunnanensis differs by its large ascomata and solid gleba with whitish veins. An ITS-based phylogenetic analysis supports the erection of the four new species. A key for Hydnobolites species from China is provided.

Keywords

Hypogeous fungi Pezizomycotina Phylogeny Taxonomy Truffle Four new species 

Notes

Funding information

The study was supported by the National Natural Science Foundation of China (No. 31270058, 31750001), the Beijing Natural Science Foundation (No. 5172003), and Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (025185305000/198).

References

  1. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20(2):255–266.  https://doi.org/10.1093/molbev/msg028 CrossRefPubMedGoogle Scholar
  2. Alvarado P, Moreno G, MANJÓN JL, Gelpi C, Kaounas V, Konstantinidis G, Barseghyan GS, Venturella G (2011) First molecular data on Delastria rosea, Fischerula macrospora and Hydnocystis piligera. Boln Soc Micol Madrid 35:31–37Google Scholar
  3. Argüelles-Moyao A, Garibay-Orijel R, Arellano-Torres E (2016) Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza 27(1):1–13.  https://doi.org/10.1007/s00572-016-0724-1 Google Scholar
  4. Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2015) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193(2):465–473.  https://doi.org/10.1111/j.1469-8137.2011.03927.x CrossRefGoogle Scholar
  5. Brock PM, Döring H, Bidartondo MI (2009) How to know unknown fungi: the role of a herbarium. New Phytol 181(3):719–724.  https://doi.org/10.1111/j.1469-8137.2008.02703.x CrossRefPubMedGoogle Scholar
  6. Dring DM (1971) Techniques for microscopic preparation. In: Booth C (ed) Methods in microbiology, vol 4. Academic, New York, p 98Google Scholar
  7. Erlandson SR, Savage JA, Cavender-Bares JM, Peay KG (2015) Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiol Ecol 92(1):fiv148.  https://doi.org/10.1093/femsec/fiv148 CrossRefPubMedGoogle Scholar
  8. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118.  https://doi.org/10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  9. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.  https://doi.org/10.12691/ajmr-2-6-8 Google Scholar
  10. Healy RA, Smith ME, Bonito GM, Pfister DH, Ge ZW, Guevara GG, Williams G, Stafford K, Kumar L, Lee T, Hobart C, Trappe J, Vilgalys R, McLaughlin DJ (2013) High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol Ecol 22(6):1717–1732.  https://doi.org/10.1111/mec.12135 CrossRefPubMedGoogle Scholar
  11. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42(2):182–192.  https://doi.org/10.1093/sysbio/42.2.182 CrossRefGoogle Scholar
  12. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford, p 325CrossRefGoogle Scholar
  13. Klavina D, Pennanen T, Gaitnieks T, Velmala S, Lazdins A, Lazdina D, Menkis A (2016) The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash. Mycorrhiza 26(2):153–160.  https://doi.org/10.1007/s00572-015-0655-2 CrossRefPubMedGoogle Scholar
  14. Kovács GM, Trappe JM, Alsheikh AM, Hansen K, Healy RA (2011) Terfezia disappears from the American truffle mycota as two new genera and Mattirolomyces species emerge. Mycologia 103(4):831–840.  https://doi.org/10.3852/10-273 CrossRefPubMedGoogle Scholar
  15. Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed central European forest. Mycorrhiza 21(4):297–308.  https://doi.org/10.1007/s00572-010-0338-y CrossRefPubMedGoogle Scholar
  16. Lange M (1956) Danish hypogeous macromycetes [M]. Ejnar MunksgaardGoogle Scholar
  17. Leonardi M, Iotti M, Oddis M, Lalli G, Pacioni G, Leonardi P, Maccherini S, Perini C, Salerni E, Zambonelli A (2013) Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 23(5):349–358.  https://doi.org/10.1007/s00572-012-0474-7 CrossRefPubMedGoogle Scholar
  18. Long D, Liu J, Han Q, Wang X, Huang J (2016) Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the loess plateau, China. Sci Rep 6:24336CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nylander J (2004) MrModeltest 2.2. Computer software distributed by the Evolutionary Biology Centre, University of Uppsala, UppsalaGoogle Scholar
  20. Page RD (2001) TreeView. Glasgow University, GlasgowGoogle Scholar
  21. Pegler DN, Spooner BM. Young TWK (1993) British truffles. A Revision of British Hypogeous Fungi. Royal Botanic Gardens, KewGoogle Scholar
  22. Rambaut A (2000) Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16(4):395–399.  https://doi.org/10.1093/bioinformatics/16.4.395 CrossRefPubMedGoogle Scholar
  23. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  24. Roy M, Rochet J, Manzi S, Jargeat P, Gryta H, Moreau PA, Gardes (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198(4):1228–1238.  https://doi.org/10.1111/nph.12212 CrossRefPubMedGoogle Scholar
  25. Smith ME, Schmull M (2011) Tropical truffles: English translation and critical review of F. von Höhnel’s truffles from Java. Mycol Prog 10(2):249–260.  https://doi.org/10.1007/s11557-010-0694-1 CrossRefGoogle Scholar
  26. Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174(4):847–863.  https://doi.org/10.1111/j.1469-8137.2007.02040.x CrossRefPubMedGoogle Scholar
  27. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and Other Methods). Version 4.0b10. Sinauer Associates. Sunderland.  https://doi.org/10.1111/j.0014-3820.2002.tb00191.x
  28. Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10(5):1189–1201.  https://doi.org/10.1111/j.1462-2920.2007.01535.x CrossRefPubMedGoogle Scholar
  29. Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199(3):822–831.  https://doi.org/10.1111/nph.12328 CrossRefPubMedGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewnlak F, Jianmougin F, Higgins DG (1997) The Clustal X windows interfaces: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882.  https://doi.org/10.1093/nar/25.24.4876 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Trappe JM, Molina R, Luoma DL, Cázares E, Pilz D, Smith JE, Castellano MA, Miller SL and Trappe MJ (2009) Diversity, ecology, and conservation of truffle fungi in forests of the Pacific Northwest. Gen. Tech. Rep. PNW-GTR-772. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. p194Google Scholar
  32. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246.  https://doi.org/10.1128/jb.172.8.4238-4246.1990 CrossRefPubMedPubMedCentralGoogle Scholar
  33. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR protocols: a guide to methods and applications 18(1):315–322.  https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  34. Wu E, Lan Z, Xiang Y, Han Z (1993) A new species of Tuberales from China. Mycol Res 97(8):1021–1022.  https://doi.org/10.1016/S0953-7562(09)80874-5 CrossRefGoogle Scholar
  35. Xu AS (2003) Additional hypogeous fungi in Xizang. Proc 6th Ann MSA Conference 445Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life ScienceCapital Normal UniversityBeijingChina

Personalised recommendations