Mycological Progress

, Volume 17, Issue 1–2, pp 89–101 | Cite as

Relationships within Capitotricha bicolor (Lachnaceae, Ascomycota) as inferred from ITS rDNA sequences, including some notes on the Brunnipila and Erioscyphella clades

  • Markéta ŠandováEmail author
  • R. Henrik Nilsson
  • Miroslav Kolařík
Original Article


DNA sequences of Capitotricha bicolor from Quercus, Fagus sylvatica, Alnus alnobetula, and Nothofagus, and C. rubi from Rubus idaeus were obtained from apothecia to establish whether specimens from different hosts belong to separate species. The obtained ITS1–5.8S–ITS2 rDNA sequences were examined with Bayesian and parsimony phylogenetic analyses. Intra- and interspecific variation was also investigated based on molecular distances in the ITS region. The phylogenetic analyses supported the specific distinctness of Capitotricha rubi and the Capitotricha from Nothofagus, but also suggest specific distinctness between samples from Quercus, Fagus, and Alnus. The interspecific distances were larger than intraspecific distances for all examined units. The smallest distance was found between the “Alnus alnobetula” and “Fagus sylvatica” units. Two new sequences of Brunnipila are published. Capitotricha, Lachnum, and Erioscyphella are compared to each other based on hair and excipulum characteristics.


Lachnaceae Lachnoid fungi Phylogeny Taxonomy DNA barcoding 



The first author would like to thank Andrzej Chlebicki (W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków) for organizing the expedition to Chile and field trips to Austria and the Carpathians (project no. 2 P04F 066 28, granted by the Ministry of Science and Information Society Technologies, Poland). Hans-Otto Baral kindly reviewed the manuscript and proposed many detailed corrections. Vladimír Melichar and Petr Lepší are acknowledged for consultation regarding Alnus alnobetula in the Czech Republic. Dr. Kamil Zágoršek is thanked for his technical help with the scanning electron microscopy. The present study was supported by the Ministry of Culture of the Czech Republic (DKRVO 2017/08, National Museum, 00023272), the Ministry of Education, Youth and Sports of the Czech Republic (project CZ.1.07/2.3.00/30.0003), and BIOCEV—Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University (no. CZ.1.05/1.1.00/02.0109).


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baral H-O (1987) Lugol’s solution/IKI versus Melzer’s reagent: hemiamyloidity, a universal feature of the ascus wall. Mycotaxon 29:399–450Google Scholar
  3. Baral H-O, Krieglsteiner GJ (1985) Bausteine zu einer Askomyzeten-Flora der BR Deutschland: In Süddeutschland gefundene Inoperculate Discomyzeten mit taxonomischen, ökologischen und chorologischen Hinweisen. Beih Zeitschr Mykol 6:1–160Google Scholar
  4. Baral H-O, Garcia G, Bogale M, O’Hara MJ, Untereiner WA (2012) Colipila, a new genus in the Helotiales. Mycol Prog 11:201–214. CrossRefGoogle Scholar
  5. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. Google Scholar
  6. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2017) GenBank. Nucleic Acids Res 45(D1):D37–D42. CrossRefPubMedGoogle Scholar
  7. Buchan A, Newell SY, Moreta JL, Moran MA (2002) Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microb Ecol 43:329–340. CrossRefPubMedGoogle Scholar
  8. Cantrell SA, Hanlin RT (1997) Phylogenetic relationships in the family Hyaloscyphaceae inferred from sequences of ITS regions, 5.8S ribosomal DNA and morphological characters. Mycologia 89:745–755. CrossRefGoogle Scholar
  9. Chlebická M (2009) Biodiversity of Lachnaceae on leaves of Acer, Quercus and Vaccinium. Mykol Listy Supplementum 2009:72–73Google Scholar
  10. Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124. CrossRefGoogle Scholar
  11. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 12:543–548CrossRefGoogle Scholar
  12. Gernandt DS, Camacho FJ, Stone JK (1997) Meria laricis, an anamorph of Rhabdocline. Mycologia 89:735–744. CrossRefGoogle Scholar
  13. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786.
  14. Guatimosim E, Schwartsburd PB, Crous PW, Barreto RW (2016) Novel fungi from an ancient niche: lachnoid and chalara-like fungi on ferns. Mycol Progress 15:1239–1267. CrossRefGoogle Scholar
  15. Han JG, Hosoya T, Sung GH, Shin HD (2014) Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biol 118:150–167. CrossRefPubMedGoogle Scholar
  16. Hein B (1980) Raster-elektronenmikroskopische Untersuchungen an Haaren von Hyaloscyphaceae (Ascomycetes, Helotiales). Nova Hedw 32:31–62Google Scholar
  17. Hosoya T, Sasagawa R, Hosaka K, Sung GH, Hirayama Y, Yamaguchi K, Toyama K, Kakishima M (2010) Molecular phylogenetic studies of Lachnum and its allies based on the Japanese material. Mycoscience 51:170–181. CrossRefGoogle Scholar
  18. Huhtinen S (1987) Three new species, and the histochemical delimitation of genera in the glassy-haired Hyaloscyphaceae. Mycotaxon 29:267–283Google Scholar
  19. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Bio Evol 30:772–780. CrossRefGoogle Scholar
  20. Kornerup A, Wanscher JH (1981) Taschenlexikon der Farben. Muster-Schmidt, ZürichGoogle Scholar
  21. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Miyoshi T, Ono Y, Shimizu S (2007) Occurrence of concave stem canker of citrus in Ehime prefecture and detection of the pathogenic fungus Lachnum abnorme by PCR. Japanese J Phytopathol 73:9–14CrossRefGoogle Scholar
  23. Nilsson RH, Ryberg M, Sjökvist E, Abarenkov K (2011) Rethinking taxon sampling in the light of environmental sequencing. Cladistics 27:197–203. CrossRefGoogle Scholar
  24. Perić B, Baral H-O (2014) Erioscyphella curvispora spec. nov. from Montenegro. Mycol Monten 17:89–104Google Scholar
  25. Phillips W, Plowright CB (1880) New and rare British fungi. Grevillea 8:97–109Google Scholar
  26. Raitviir A (1970) Synopsis of the Hyaloscyphaceae. Scripta Mycol 1:1–115Google Scholar
  27. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477. CrossRefPubMedGoogle Scholar
  29. Slavík B (1988) Regionálně fytogeografické členění. In: Hejný S, Slavík B (eds) Květena České socialistické republiky 1. Academia, Praha, pp 103–121Google Scholar
  30. Spooner BM (1987) Helotiales of Australasia: Geoglossaceae, Orbiliaceae, Sclerotiniaceae, Hyaloscyphaceae. Bibl Mycol 116:1–711Google Scholar
  31. Suková M (2005) A revision of selected material of lignicolous species of Brunnipila, Capitotricha, Dasyscyphella and Neodasyscypha from the Czech Republic. Czech Mycol 57:139–172Google Scholar
  32. Vrålstad T, Myhre E, Schumacher T (2002) Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155:131–148CrossRefGoogle Scholar
  33. White TJ, Bruns T, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  34. Zhao P, Zhuang W-Y (2011) Evaluation of ITS region as a possible DNA barcode for the genus Lachnum (Helotiales). Mycosystema 30:932–937Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Mycological DepartmentNational MuseumPraha 9Czech Republic
  2. 2.Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
  3. 3.Gothenburg Global Biodiversity CentreGöteborgSweden
  4. 4.Laboratory of Fungal Genetics and Metabolism, Institute of MicrobiologyCzech Academy of Sciences (CAS)Praha 4Czech Republic

Personalised recommendations