Advertisement

Mycological Progress

, Volume 16, Issue 5, pp 553–564 | Cite as

Three new species of Hyphodontia s.l. (Basidiomycota) with poroid or raduloid hymenophore

Original Article

Abstract

Three species of Hyphodontia (Schizoporaceae) with poroid or raduloid hymenial surface are described as new to science. Hyphodontia chinensis sp. nov. was found in southwest and northeast China, having raduloid hymenophore, ventricose to subulate cystidia, and slightly thickened-walled, ellipsoid basidiospores; H. reticulata sp. nov. was found in central Japan and northern Taiwan, having poroid hymenophore, projecting peg-like structures, and encrusted cystidia; H. subtropica sp. nov. was collected from China (Yunnan province) and northern Vietnam, having poroid hymenophore, slightly apically swollen cystidioles, and pseudodimitic hyphal system. Both maximum parsimony and Bayesian methods were used to construct the phylogenetic trees based on ITS (internal transcribed spacer) sequences. The independent status of each proposed new species is based on morphological study, further confirmed by ITS-based phylogenetic analysis. The recently presented H. dimitica is found to be conspecific with H. nongravis, based on morphological and molecular evidences.

Keywords

Corticioid fungi ITS Schizopora Taxonomy Xylodon 

Notes

Acknowledgments

This study was financed by the Ministry of Science and Technology of the Republic of China (grant no. 104-2621-B-178-001-MY3). The authors are indebted to the two anonymous reviewers for their critical suggestions in manuscript improvement and are also grateful to the curator of BJFC for arranging the loan of the type specimen of Hyphodontia dimitica for this study.

References

  1. Brazee NJ, Lindner DL, D’Amato AW, Fraver S, Forrester JA, Mladenoff DJ (2014) Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. Biodivers Conserv 23:2155–2172. doi: 10.1007/s10531-014-0710-x CrossRefGoogle Scholar
  2. Chen JJ, Zhou LW, Ji XH, Zaho CL (2016) Hyphodontia dimitica and H. subefibulata spp. nov. (Schizoporaceae, Hymenochaetales) from southern China based on morphological and molecular characters. Phytotaxa 269:1–13. doi: 10.11646/phytotaxa.269.1.1 CrossRefGoogle Scholar
  3. Eriksson J (1958) Studies in the Heterobasidiomycetes and Homobasidiomycetes—Aphyllophorales of Muddus National Park in North Sweden. Symb Bot Ups 16:1–172Google Scholar
  4. Eriksson J, Ryvarden L (1976) The Corticiaceae of North Europe, vol 4. HyphodermellaMycoacia. Fungiflora, Oslo, pp 549–886Google Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791. doi: 10.2307/2408678 CrossRefGoogle Scholar
  6. Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. doi: 10.1111/j.1461-0248.2010.01465.x CrossRefPubMedGoogle Scholar
  7. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  8. Hjortstam K, Ryvarden L (1986) Some new and noteworthy fungi (Aphyllophorales, Basidiomycetes) from Iguazu, Argentina. Mycotaxon 25:539–567Google Scholar
  9. Hjortstam K, Ryvarden L (2009) A checklist of names in Hyphodontia sensu stricto-sensu lato and Schizopora with new combinations in Lagarobasidium, Lyomyces, Kneiffiella, Schizopora, and Xylodon. Syn Fungorum 26:33–55Google Scholar
  10. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  11. Jang Y, Jang S, Lee J, Lee H, Lim YW, Kim C, Kim JJ (2016) Diversity of wood-inhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. Mycobiology 44:217–236. doi: 10.5941/MYCO.2016.44.4.217 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  14. Langer E (1994) Die Gattung Hyphodontia John Eriksson. Bibl Mycol 154:1–298Google Scholar
  15. Larsson KH, Parmasto E, Fischer M, Langer E, Nakasone KK, Redhead SA (2006) Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia 98:926–936. doi: 10.3852/mycologia.98.6.926 CrossRefPubMedGoogle Scholar
  16. Miettinen O, Larsson KH (2011) Sidera, a new genus in Hymenochaetales with poroid and hydnoid species. Mycol Prog 10:131–141. doi: 10.1007/s11557-010-0682-5 CrossRefGoogle Scholar
  17. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  18. Niemelä T (1987) The raduloid species of Schizopora. Beiträge zur Kenntnis der Pilze Mitteleuropas 3:365–370Google Scholar
  19. Nobles MK (1967) Conspecificity of Basidioradulum (Radulum) radula and Corticium hydnans. Mycologia 59:192–211CrossRefGoogle Scholar
  20. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  21. Paulus B, Hallenberg N, Buchanan PK, Chambers GK (2000) A phylogenetic study of the genus Schizopora (Basidiomycota) based on ITS DNA sequences. Mycol Res 104:1155–1163. doi: 10.1017/S0953756200002720 CrossRefGoogle Scholar
  22. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  23. Riebesehl J, Langer EJ, Ordynets A, Striegel MM, Witzany C (2015) Hyphodontia borbonica, a new species from La Réunion. Mycol Prog 14:104. doi: 10.1007/s11557-015-1126-z CrossRefGoogle Scholar
  24. Shorthouse DP (2010) SimpleMappr, an online tool to produce publication-quality point maps. Home page at: http://www.simplemappr.net. Accessed 8 January 2017
  25. Stöver BC, Müller KF (2010) TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform 11:1–9. doi: 10.1186/1471-2105-11-7 CrossRefGoogle Scholar
  26. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  27. Wu SH (1990) The Corticiaceae (Basidiomycetes) subfamilies Phlebioideae, Phanerochaetoideae and Hyphodermoideae in Taiwan. Acta Bot Fenn 142:1–123Google Scholar
  28. Wu SH (2000) Studies on Schizopora flavipora s.l., with special emphasis on specimens from Taiwan. Mycotaxon 76:51–66Google Scholar
  29. Yurchenko E, Wu SH (2014) Three new species of Hyphodontia with peg-like hyphal aggregations. Mycol Prog 13:533–545. doi: 10.1007/s11557-013-0935-1 CrossRefGoogle Scholar
  30. Yurchenko E, Wu SH (2016) A key to the species of Hyphodontia sensu lato. MycoKeys 12:1–27. doi: 10.3897/mycokeys.12.7568 CrossRefGoogle Scholar
  31. Yurchenko E, Xiong HX, Wu SH (2013) Four new species of Hyphodontia (Xylodon ss. Hjortstam & Ryvarden, Basidiomycota) from Taiwan. Nova Hedwigia 96:545–558. doi: 10.1127/0029-5035/2013/0092 CrossRefGoogle Scholar
  32. Zhao CL, Cui BK, Dai YC (2014) Morphological and molecular identification of two new species of Hyphodontia (Schizoporaceae, Hymenochaetales) from southern China. Cryptogam Mycol 35(1):87–97. doi: 10.7872/crym.v35.iss1.2014.87 CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Plant PathologyNational Chung Hsing UniversityTaichungRepublic of China
  2. 2.Department of BiologyNational Museum of Natural ScienceTaichungRepublic of China

Personalised recommendations