Three new Penicillium species from marine subaqueous soils

Abstract

During investigation of the mycobiota in the Sea of Okhotsk, three new Penicillium species were isolated from subaqueous soils collected in the Sakhalin Gulf and in the northeastern part of the Sakhalin shelf, near the Piltun Bay. According to Raper and Thom’s classification, the newly described species P. piltunense, P. ochotense, and P. attenuatum belong to subsection Divaricata. Two analyses were performed to reveal the phylogenetic relationships of the putative new species with other Penicillium species. Phylogenetically, the new species are related to the members of the P. canescens group and share some morphological and physiological features with them. However, they differ in having a larger colony diameter that makes them similar to P. atrovenetum, P. coralligerum, and P. antarcticum. A detailed analysis based on ITS, combined β-tubulin and calmodulin datasets, and morphological features revealed that the new species formed a distinct group inside the P. atrovenetum subclade. Moreover, P. attenuatum differs from the other two species macro- and micromorphologically and may represent a distinct phylogenetic lineage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Blaylock RB, Overstreet RM, Klich MA (2001) Mycoses in red snapper (Lutjanus campechanus) caused by two deuteromycete fungi (Penicillium corylophilum and Cladosporium sphaerospermum). Hydrobiologia 460:221–228. doi:10.1023/A:1013124214166

    Article  Google Scholar 

  2. Bubnova EN, Kireev JV (2009) Fungal communities associated with brown seaweeds Fucus spp. in the Kandalaksha Bay (White Sea, NW Russia). Mikol Fitopatol 43:388–397 (in Russian)

    Google Scholar 

  3. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the dead sea: first records. Proc R Soc Lond B 265:1461–1465

    CAS  Article  Google Scholar 

  4. Devarajan PT, Suryanarayanan TS (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31:73–74

    Google Scholar 

  5. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174

    Google Scholar 

  6. Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. Int J Syst Evol Microbiol 56:1427–1437. doi:10.1099/ijs.0.64160-0

    CAS  Article  PubMed  Google Scholar 

  7. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong S-B, Go S-J, Shin H-D, Frisvad JC, Samson RA (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97:1316–1329. doi:10.3852/mycologia.97.6.1316

    CAS  Article  PubMed  Google Scholar 

  9. Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust H-J, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  10. Houbraken J, Varga J, Rico-Munoz E, Johnson S, Samson RA (2008) Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (anamorph Paecilomyces variotii). Appl Environ Microbiol 74:1613–1619. doi:10.1128/AEM.01761-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Houbraken JA, Frisvad JC, Samson RA (2010) Taxonomy of Penicillium citrinum and related species. Fungal Divers 44:117–133. doi:10.1007/s13225-010-0047-z

    Article  Google Scholar 

  12. Houbraken J, Frisvad JC, Samson RA (2011) Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–138. doi:10.3114/sim.2011.70.02

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100. doi:10.3767/003158512X660571

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Jaber BM, Al-Silawi R, Al-Najjar T (2012) Isolation and molecular identification of Ascomycetes in sediments and waters of the Gulf of Aqaba, Red Sea. Nat Sci 4:555–561. doi:10.4236/ns.2012.48074

    CAS  Google Scholar 

  15. Janso JE, Bernan VS, Greenstein M, Bugni TS, Ireland CM (2005) Penicillium dravuni, a new marine-derived species from an alga in Fiji. Mycologia 97:444–453. doi:10.3852/mycologia.97.2.444

    CAS  Article  PubMed  Google Scholar 

  16. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi:10.1093/nar/gkf436

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kirichuk NN, Pivkin MV (2015) Filamentous fungi associated with the seagrass Zostera marina Linnaeus, 1753 of Rifovaya Bay (Peter the Great Bay, the Sea of Japan). Russ J Mar Biol 41:351–355. doi:10.1134/S1063074015050053

    Article  Google Scholar 

  18. Kirichuk NN, Pivkin MV, Polokhin OV (2012) Fungal assemblages of submarine soils of the eastern Sakhalin shelf. Russ J Mar Biol 38:375–380. doi:10.1134/S1063074012050069

    Article  Google Scholar 

  19. Ling J, Zhang Y, Wu M, Wang Y, Dong J, Jiang Y, Yang Q, Zeng S (2015) Fungal community successions in rhizosphere sediment of seagrasses Enhalus acoroides under PAHs stress. Int J Mol Sci 16:14039–14055. doi:10.3390/ijms160614039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15. doi:10.1007/s13225-010-0022-8

    Article  Google Scholar 

  21. McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111. doi:10.1007/s003000050340

    Article  Google Scholar 

  22. Molitoris HP, Buchalo AS, Kurchenko I, Nevo E, Rawal BS, Wasser SP, Oren A (2000) Physiological diversity of the first filamentous fungi isolated from the hypersaline Dead Sea. Fungal Divers 5:55–70

    Google Scholar 

  23. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford, 352 pp

    Google Scholar 

  24. Park MS, Fong JJ, Oh S-Y, Kwon KK, Sohn JH, Lim YW (2014a) Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties. Antonie Van Leeuwenhoek 106:331–345. doi:10.1007/s10482-014-0205-5

    CAS  Article  PubMed  Google Scholar 

  25. Park MS, Lee EJ, Fong JJ, Sohn JH, Lim YW (2014b) A new record of Penicillium antarcticum from marine environments in Korea. Microbiology 42:109–113. doi:10.5941/MYCO.2014.42.2.109

    Google Scholar 

  26. Park MS, Fong JJ, Oh S-Y, Houbraken J, Sohn JH, Hong S-B, Lim YW (2015) Penicillium jejuense sp. nov., isolated from the marine environments of Jeju Island, Korea. Mycologia 107:209–216. doi:10.3852/14-180

    Article  PubMed  Google Scholar 

  27. Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26. doi:10.1007/s13225-010-0020-x

    Article  Google Scholar 

  28. Peterson SW (2000) Phylogenetic analysis of Penicillium species based on ITS and LSU-rDNA nucleotide sequences. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, The Netherlands, pp 163–178

    Google Scholar 

  29. Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London, 634 pp

    Google Scholar 

  30. Pivkin MV (2000) Filamentous fungi associated with holothurians from the Sea of Japan, off the primorye coast of Russia. Biol Bull 198:101–109

    CAS  Article  PubMed  Google Scholar 

  31. Pivkin MV, Aleshko SA, Krasokhin VB, Khudyakova YV (2006) Fungal assemblages associated with sponges of the southern coast of Sakhalin Island. Russ J Mar Biol 32:207–213. doi:10.1134/S1063074006040018

    Article  Google Scholar 

  32. Ramirez C (1982) Manual and atlas of the Penicillia. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  33. Raper KB, Thom C (1949) A manual of the Penicillia. Williams & Wilkins, Baltimore

    Google Scholar 

  34. Ridgway R (1912) Color standards and color nomenclature. Published by the author, Washington DC, USA. Available online at: http://archive.org/details/mobot31753002026018. Accessed 4 July 2016

  35. Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45. doi:10.1007/s13225-009-0013-9

    Article  Google Scholar 

  36. Samuel P, Prince L, Prabakaran P (2011) Assessment of mycological diversity of marine sediment of south east coast of Tamilnadu, India. Eur J Exp Biol 1:130–138

    Google Scholar 

  37. Serra R, Peterson SW (2007) Penicillium astrolabium and Penicillium neocrassum, two new species isolated from grapes and their phylogenetic placement in the P. olsonii and P. brevicompactum clade. Mycologia 99:78–87

    CAS  Article  PubMed  Google Scholar 

  38. Serra R, Peterson S, Venâncio A (2008) Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Res Microbiol 159:178–186. doi:10.1016/j.resmic.2007.12.009

    CAS  Article  PubMed  Google Scholar 

  39. Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40:89–102. doi:10.1007/s13225-009-0009-5

    Article  Google Scholar 

  40. Slinkina NN, Pivkin MV (2007) Biodiversity of microfungi from aquasoils at southern part of Sakhalin island. Mikol Fitopatol 41:48–56 (in Russian)

    Google Scholar 

  41. Slinkina NN, Pivkin MV, Polokhin OV (2010) Filamentous fungi of the submarine soils of the Sakhalin Gulf (Sea of Okhotsk). Russ J Mar Biol 36:413–418. doi:10.1134/S1063074010060027

    Article  Google Scholar 

  42. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One 8:1–9. doi:10.1371/journal.pone.0072520

    Article  Google Scholar 

  43. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2014) Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides. Indian J Mar Sci 43:785–797

    Google Scholar 

  44. Swart HI (1970) Penicillium dimorphosporum sp. nov. Trans Br Mycol Soc 55:310–313

    Article  Google Scholar 

  45. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  46. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. doi:10.1073/pnas.0404206101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Tuthill DE, Frisvad JC, Christensen M (2001) Systematics of Penicillium simplicissimum based on rDNA sequences, morphology and secondary metabolites. Mycologia 93:298–308. doi:10.2307/3761651

    CAS  Article  Google Scholar 

  48. Ueda S (1995) A new species of Eupenicillium from marine sediment. Mycoscience 36:451–454. doi:10.1007/BF02268631

    Article  Google Scholar 

  49. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, UK, pp 315–322

    Google Scholar 

  50. Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585. doi:10.3390/md9040561

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466. doi:10.1017/S0953756203008657

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the program grant from the Russian Science Foundation no. 14-14-00030 (phenotypical and physiological study of fungi) and the Russian Foundation for Basic Research no. 15-29-02572 (molecular genetic study of fungi).

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. N. Kirichuk.

Additional information

Section Editor: Roland Kirschner and Pedro W. Crous

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirichuk, N.N., Pivkin, M.V. & Matveeva, T.V. Three new Penicillium species from marine subaqueous soils. Mycol Progress 16, 15–26 (2017). https://doi.org/10.1007/s11557-016-1247-z

Download citation

Keywords

  • New Penicillium species
  • Marine-derived Penicillium
  • Subaqueous soil
  • ITS
  • Calmodulin gene
  • β-Tubulin gene