Mycological Progress

, 15:17 | Cite as

Three new species of Ophiostomatales from Nothofagus in Patagonia

  • A. de Errasti
  • Z. W. de Beer
  • M. P. A. Coetzee
  • J. Roux
  • M. Rajchenberg
  • M. J. Wingfield
Original Article

Abstract

The Ophiostomatales (Ascomycota) include mainly insect and mite-associated fungi, the majority of which are found on trees. Very little is known regarding the occurrence or diversity of these fungi in South America. The aim of this study was to consider their occurrence on native Nothofagus trees in the Patagonian Andes of Argentina. Isolates were collected in national parks and provincial reserves in Patagonia between 2009 and 2011. These were grouped based on morphology, and 22 representative isolates were included in phylogenetic analyses based on sequence data of multiple loci (LSU, ITS, beta-tubulin and translation elongation factor-1 alpha genes). The isolates could be assigned to ten different taxa, and included eight species of Ophiostoma s. l., one species of Leptographium, and one species in the Sporothrix lignivora complex. Three of the species are described as new, including Ophiostoma patagonicum, Leptographium gestamen, and Sporothrix cabralii. Ophiostoma quercus and O. noveae-zelandiae are reported for the first time from Argentina, and we show that the latter species is distinct from O. pluriannulatum, in contrast to a previous suggestion that they represent the same taxon.

Keywords

Ambrosia beetles Nitidulid beetles Blue-stain Ophiostomatoid fungi 

Notes

Acknowledgments

We are grateful to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) for funding through PIP 80101000 (to MR) and the South Africa – Argentina Science & Technology Research Bilateral Cooperation Program (MINCYT-DST SA10/02). Lynn Sigler (UAMH, Canada) and Andrea Romero (BAFC, Buenos Aires, Argentina) kindly assisted with cultures under their keeping. DongHyeon Lee, Mingliang Yin, Tuan Duong, Markus Wilken, and Johan van der Linde provided valuable laboratory support.

References

  1. Aguayo Silva J, Ojeda Alvarado A, Baldini Urrutia A, Cerda Martinez L, Emanuelli Avilés P, Kirkendall LR, Sartori Ruilova A (2008) Manual de plagas y enfermedades del bosque nativo en Chile Manual de Cooperación Técnica. FAO, Santiago de ChileGoogle Scholar
  2. Berbee ML, Taylor JW (1992) 18s ribosomal RNA gene sequence characters place the pathogen Sporothrix schenckii in the genus Ophiostoma. Exp Mycol 16:87–91. doi: 10.1016/0147-5975(92)90044-R CrossRefGoogle Scholar
  3. Billings RF (1993) Pest risk assessment of the importation of Pinus radiata, Nothofagus dombeyi, and Laurellia philippiana logs from Chile. USDA For Serv Miscellaneous Publication No 1517Google Scholar
  4. Butin H (1968) A new species of Ceratocystis causing blue-stain in Araucaria araucana. Can J Bot 46:61–63. doi: 10.1139/b68-012 CrossRefGoogle Scholar
  5. Butin H (1978) A new species of Ophiostoma causing blue-stain in Araucaria angustifolia (Bertol.) O. Kuntze. Phytopathol Z 91:230–234Google Scholar
  6. Butin H, Aquilar AM (1984) Blue-stain fungi on Nothofagus from Chile - including two new species of Ceratocystis Ellis & Halst. Phytopathol Z 109:80–89. doi: 10.1111/j.1439-0434.1984.tb04233.x CrossRefGoogle Scholar
  7. De Beer ZW, Wingfield MJ (2013) Emerging lineages in the Ophiostomatales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The Ophiostomatoid fungi: Expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands, pp 21–46Google Scholar
  8. De Beer ZW, Wingfield BD, Wingfield MJ (2003) The Ophiostoma piceae complex in the Southern Hemisphere: A phylogenetic study. Mycol Res 107:469–476. doi: 10.1017/S0953756203007445 CrossRefPubMedGoogle Scholar
  9. De Beer ZW, Seifert KA, Wingfield MJ (2013a) The ophiostomatoid fungi: Their dual position in the sordariomycetes. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: Expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, pp 1–19Google Scholar
  10. De Beer ZW, Seifert KA, Wingfield MJ (2013b) A nomenclator for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: Expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, pp 245–322Google Scholar
  11. De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ (2014) Redefining Ceratocystis and allied genera. Stud Mycol 79:187–219. doi: 10.1016/j.simyco.2014.10.001 PubMedCentralCrossRefPubMedGoogle Scholar
  12. De Hoog GS (1974) The genera Blastobotrys, Sporothrix, Calcarisporium and Calcarisporiella gen. nov. Stud Mycol 7:1–84Google Scholar
  13. De Meyer EM, De Beer ZW (2008) Taxonomy and phylogeny of new wood-and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 100:647–661. doi: 10.3852/07-157R CrossRefPubMedGoogle Scholar
  14. Faulds W (1973) Discolouration associated with Platypus wounds in living Nothofagus fusca. N Z J For Sci 3:331–341Google Scholar
  15. Faulds W (1977) A pathogenic fungus associated with Platypus attack on New Zealand Nothofagus species. N Z J For Sci 7:384–396Google Scholar
  16. Grobbelaar JW, De Beer ZW, Bloomer P, Wingfield MJ, Wingfield BD (2010) Ophiostoma tsotsi sp. nov., a wound-infesting fungus of hardwood trees in Africa. Mycopathologia 169:413–423. doi: 10.1007/s11046-009-9267-8 CrossRefPubMedGoogle Scholar
  17. Guidon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi: 10.1080/10635150390235520 CrossRefGoogle Scholar
  18. Harrington TC (1981) Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129CrossRefGoogle Scholar
  19. Harrington TC, McNew DL, Steimel JP, Hofstra D, Farrell RL (2001) Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi. Mycologia 93:111–136CrossRefGoogle Scholar
  20. Hausner G, Reid J, Klassen GR (1992) Do galeate-ascospore members of the cephaloascaceae, endomycetaceae and ophiostomataceae share a common phylogeny? Mycologia 84:870–881. doi: 10.2307/3760285 CrossRefGoogle Scholar
  21. Hausner G, Reid J, Klassen GR (1993) On the subdivision of Ceratocystis s. l. based on partial ribosomal DNA sequences. Can J Bot 71:59–114. doi: 10.1139/b93-007 Google Scholar
  22. Hutchison LJ, Reid J (1988) Taxonomy of some potential wood-staining fungi from New Zealand. 1 Ophiostomataceae. N Z J Bot 26:63–81. doi: 10.1080/0028825X.1988.10410099 CrossRefGoogle Scholar
  23. Jacobs K, Wingfield MJ (2001) Leptographium species, tree pathogens, insect associates and agents of blue-stain. American Phytopathological Society press, St. Paul, MinnesotaGoogle Scholar
  24. Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418. doi: 10.1017/S0953756204009748 CrossRefPubMedGoogle Scholar
  25. Jewell TR (1974) A qualitative study of cellulose distribution in Ceratocystis and Europhium. Mycologia 66:139–146CrossRefPubMedGoogle Scholar
  26. Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species, including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59Google Scholar
  27. Kamgan Nkuekam G, De Beer ZW, Wingfield MJ, Mohammed C, Carnegie A, Pegg G, Roux J (2011) Ophiostoma species (ophiostomatales, ascomycota), including two new taxa on eucalypts in Australia. Aust J Bot 59:283–297. doi: 10.1071/BT10231 CrossRefGoogle Scholar
  28. Kamgan Nkuekam G, De Beer ZW, Wingfield MJ, Roux J (2012) A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa. Mycol Prog 11:515–533. doi: 10.1007/s11557-011-0767-9 CrossRefGoogle Scholar
  29. Katoh S (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kirisits T, Konrad H, Wingfield MJ, Chhetri DB (2013) Ophiostomatoid fungi associated with the Eastern Himalayan spruce bark beetle, Ips schmutzenhoferi, in Bhutan and their pathogenicity to Picea spinulosa and Pinus wallichiana. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: Expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, pp 99–112Google Scholar
  31. Kirkendall LR (2011) Native ambrosia beetles (Gnathotrupes spp.) and Southern Beech Decline in Chile. In: IUFRO WP.7.03.05 - Novel risks with bark and wood boring insects in broadleaved and conifer forests, Sopron, HungaryGoogle Scholar
  32. Lim YW, Kim J-J, Chedgy R, Morris PI, Breuil C (2005) Fungal diversity from western redcedar fences and their resistance to β-thujaplicin. Antonie Van Leeuwenhoek 87:109–117. doi: 10.1007/s10482-004-1729-x CrossRefPubMedGoogle Scholar
  33. Linnakoski R (2009) Ophiostoma denticiliatum sp. nov. and other Ophiostoma species associated with the birch bark beetle in southern Norway. Persoonia 23:9–5. doi: 10.3767/003158509X468038 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Masuya H, Yamaoka Y, Wingfield MJ (2013) Ophiostomatoid fungi and their associations with bark beetles in Japan. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: Expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, pp 77–90Google Scholar
  35. Munsell AH (1912) A pigment color system and notation. Am J Psychol 22:236–244. doi: 10.2307/1412843 CrossRefGoogle Scholar
  36. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:1103–1116. doi: 10.1006/mpev.1996.0376 Google Scholar
  37. Peredo H, Alonso O (1988) Mycoflora of Pinus radiata pulpwood and outdoor storing in central Chile. Mater Organismen 23:11–19Google Scholar
  38. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  39. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  40. Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9. doi: 10.1016/S0953-7562(09)80327-4 CrossRefGoogle Scholar
  41. Spencer JFT, Gorin PAJ (1971) Systematics of the genera Ceratocystis and Graphium. Proton magnetic resonance spectra of the mannose-containing polysaccharides as an aid in classification. Mycologia 63:387–402CrossRefGoogle Scholar
  42. Tamura K, Peterson D, Stecher G, Nei M, Kumar S (2011) Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Thwaites JM et al (2005) Survey of potential sapstain fungi on Pinus radiata in New Zealand. N Z J Bot 43:653–663. doi: 10.1080/0028825X.2005.9512982 CrossRefGoogle Scholar
  44. Thwaites JM, Read J, Schirp A, Grinter W, Farrell RL (2013) Ophiostomatoid fungi and blue-stain in New Zealand. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: Expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, pp 113–118Google Scholar
  45. Veblen TT, Donoso C, Kitzberger T, Robertus AJ (1996) Ecology of Southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) Ecology and biogeography of Nothofagus forests. Yale University Press, Michigan, pp 293–353Google Scholar
  46. Vilgalys R (2013). http://biology.duke.edu/fungi/mycolab/primers.htm. Accessed 07–02 2013
  47. Weijman ACM, De Hoog GS (1975) On the subdivision of the genus Ceratocystis. Antonie Van Leeuwenhoek 41:353–360. doi: 10.1007/BF02565070 CrossRefPubMedGoogle Scholar
  48. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic, New York, pp 315–324Google Scholar
  49. Wingfield MJ, Seifert KA, Webber JF (1993) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. American Phytopathological Society Press, St. Paul, MinnesotaGoogle Scholar
  50. Zanzot JW, De Beer ZW, Eckhardt LG, Wingfield MJ (2010) A new Ophiostoma species from loblolly pine roots in the southeastern United States. Mycol Prog 9:447–457. doi: 10.1007/s11557-010-0657-6 CrossRefGoogle Scholar
  51. Zhou X, De Beer ZW, Ahumada R, Wingfield BD, Wingfield MJ (2004) Ophiostoma and Ceratocystiopsis spp., associated with two pine-infesting bark beetles in Chile. Fungal Divers 15:261–274Google Scholar
  52. Zhou X, De Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277. doi: 10.3114/sim.55.1.269 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Zhou X, De Beer ZW, Wingfield MJ (2013) Ophiostomatoid fungi associated with conifer-infesting bark beetles in China. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: Expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, pp 93–100Google Scholar
  54. Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97. doi: 10.3114/sim.55.1.75 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. de Errasti
    • 1
  • Z. W. de Beer
    • 2
  • M. P. A. Coetzee
    • 3
  • J. Roux
    • 2
  • M. Rajchenberg
    • 1
  • M. J. Wingfield
    • 2
  1. 1.Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)EsquelArgentina
  2. 2.Department of Microbiology and Plant PathologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations