Advertisement

Mycological Progress

, 15:6 | Cite as

Unseen, but still present in Czechia: Hymenoscyphus albidus detected by real-time PCR, but not by intensive sampling

  • Ondřej KoukolEmail author
  • Zuzana Haňáčková
  • Miloň Dvořák
  • Ludmila Havrdová
Original Article

Abstract

The native European saprotrophic species Hymenoscyphus albidus seems to be replaced in the recent decade by a closely related, but invasive parasite of ash trees, H. fraxineus. Both species colonize the same niche, fallen petioles of ash leaves. In our study, we aimed at current distribution of H. fraxineus and attempted to find also H. albidus in Czechia. A revision of herbarium material based on molecular data confirmed the past presence of H. albidus in Czechia. Repeated attempts to rediscover H. albidus at four historical localities together with further 87 localities were unsuccessful. However, results of a targeted detection of H. albidus at four different localities using species-specific real-time PCR showed low, but constant presence of H. albidus ascospores. Therefore, H. albidus is not replaced by H. fraxineus, but these two species obviously coexist. Additionally, Cyathicula fraxinophila, another helotialean species commonly colonizing and specific to decaying ash petioles, seems to be unaffected by the spread of H. fraxineus and was present at 21 localities (at nine localities together with H. fraxineus, usually even on the same petioles). Another closely related, but plurivorous species on herbaceous stems, C. coronata, was recorded at five localities on ash petioles. Our results show that helotialean fungi colonizing ash petioles do not appear to be critically affected by the invasion of H. fraxineus.

Keywords

AP-PCR Real-time PCR Helotiales Historical distribution Coexistence Cyathicula 

Notes

Acknowledgments

We thank Markéta Šandová for her eager help in finding herbarium specimens in PRM, Dušan Romportl for visualization of the collections and numerous collectors (in alphabetical order): H. Deckerová, K. Černý, M. Hrabětová, C. Korittová, K. Novotná, K. Pešicová, V. Pešková, V. Pouska, P. Seifertová, and P. Štochlová. We also thank to T. Kirisits and K. Kräutler for providing strain of H. albidus. Special thanks are due to Hans-Otto Baral for serving as a pre-submission reviewer. This study was supported by Ministry of Agriculture of the Czech Republic no. NAZV QJ1220218 and by Institutional Support for Science and Research of the Ministry of Education, Youth, and Sports of the Czech Republic.

Supplementary material

11557_2015_1149_MOESM1_ESM.docx (34 kb)
Supplementary Table 1 Localisation of sampling sites and species recorded on petioles of F. excelsior in Czechia between 2013 and 2015. Codes represent herbarium collections deposited in PRC. Entries marked with an asterisk refer to localities with spore traps. (DOCX 34 kb)

References

  1. Bakys R, Vasaitis R, Barklund P, Ihrmark K, Stenlid J (2009) Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior. Plant Pathol 58(2):284–292. doi: 10.1111/j.1365-3059.2008.01977.x CrossRefGoogle Scholar
  2. Baral H-O (1993) Beiträge zur Taxonomie der Discomyceten III. Zeitschrift für Mykologie 59(1):3–22Google Scholar
  3. Baral H-O, Bemmann M (2014) Hymenoscyphus fraxineus vs. Hymenoscyphus albidus – A comparative light microscopic study on the causal agent of European ash dieback and related foliicolous, stroma-forming species. Mycology 5(4):228–290. doi: 10.1080/21501203.2014.963720 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Brock PM, Doring H, Bidartondo MI (2009) How to know unknown fungi: the role of a herbarium. New Phytologist 181(3):719–724. doi: 10.1111/j.1469-8137.2008.02703.x PubMedCrossRefGoogle Scholar
  5. Bruns TD, Fogel R, Taylor JW (1990) Amplification and sequencing of DNA from fungal herbarium specimens. Mycologia 82(2):175–184. doi: 10.2307/3759846 CrossRefGoogle Scholar
  6. Chandelier A, André F, Laurent F (2010) Detection of Chalara fraxinea in common ash (Fraxinus excelsior) using real time PCR. For Pathol 40(2):87–95. doi: 10.1111/j.1439-0329.2009.00610.x CrossRefGoogle Scholar
  7. Chandelier A, Helson M, Dvorak M, Gischer F (2014) Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays. Plant Pathol 63(6):1296–1305. doi: 10.1111/ppa.12218 CrossRefGoogle Scholar
  8. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  9. Gherghel F, Fussi B, Donges K, Haustein M, Jakob KM, Müller K, Piškur B, Hauptman T, Lenz HD, Konnert M, Kost G, Rexer KH, Stenlid J (2013) The development of a species-specific test to detect Hymenoscyphus pseudoalbidus in ash tissues. For Pathol 44(2):137–144. doi: 10.1111/efp.12078 CrossRefGoogle Scholar
  10. Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15(1):5–21. doi: 10.1111/mpp.12073 PubMedCrossRefGoogle Scholar
  11. Haňáčková Z, Koukol O, Havrdová L, Gross A, Cleary M (2015) Local population structure of Hymenoscyphus fraxineus surveyed by an enlarged set of microsatellite markers. For Pathol 45(5):400–407. doi: 10.1111/efp.12185 CrossRefGoogle Scholar
  12. Havrdová L, Černý K (2012) Invaze Chalara fraxinea v CHKO Lužické hory – předběžné výsledky výzkumu [The research on Chalara fraxinea invasion in Lužické hory Landscape Protected Area – preliminary results] (The research on Chalara fraxinea invasion in Lužické hory Landscape Protected Area – preliminary results). Acta Pruhoniciana 100:137–145Google Scholar
  13. Havrdová L, Černý K (2013) Význam vlhkosti vzduchu v epidemiologii nekrózy jasanu – předběžné výsledky výzkumu [The importance of air humidity in Ash Dieback epidemiology - preliminary results] (The importance of air humidity in Ash Dieback epidemiology - preliminary results). Zprávy Lesnického Výzkumu 58(4):347–352Google Scholar
  14. Heilmann-Clausen J, Barron ES, Boddy L, Dahlberg A, Griffith GW, Norden J, Ovaskainen O, Perini C, Senn-Irlet B, Halme P (2015) A fungal perspective on conservation biology. Conserv Biol 29(1):61–68. doi: 10.1111/cobi.12388 PubMedCrossRefGoogle Scholar
  15. Hietala AM, Timmermann V, Børja I, Solheim H (2013) The invasive ash dieback pathogen Hymenoscyphus pseudoalbidus exerts maximal infection pressure prior to the onset of host leaf senescence. Fungal Ecol 6(4):302–308. doi: 10.1016/j.funeco.2013.03.008 CrossRefGoogle Scholar
  16. Hirst JM (1952) An automatic volumetric spore-trap. Ann Appl Biol 39(2):257–265. doi: 10.1111/j.1744-7348.1952.tb00904.x CrossRefGoogle Scholar
  17. Holec J, Beran M (eds) (2006) Červený seznam hub (makromycetů) České republiky [Red list of fungi (macromycetes) of the Czech Republic], vol 24. Příroda, PrahaGoogle Scholar
  18. Hospodsky D, Yamamoto N, Peccia J (2010) Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl Environ Microbiol 76(21):7004–7012. doi: 10.1128/AEM.01240-10 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Husson C, Scala B, Caël O, Frey P, Feau N, Ioos R, Marçais B (2011) Chalara fraxinea is an invasive pathogen in France. Eur J Plant Pathol 130(3):311–324. doi: 10.1007/s10658-011-9755-9 CrossRefGoogle Scholar
  20. Inderbitzin P, Lim SR, Volkmann-Kohlmeyer B, Kohlmeyer J, Berbee ML (2004) The phylogenetic position of Spathulospora based on DNA sequences from dried herbarium material. Mycol Res 108(7):737–748PubMedCrossRefGoogle Scholar
  21. Jankovský L, Holdenrieder O (2009) Chalara fraxinea – Ash Dieback in the Czech Republic. Plant Prot Sci 45(2):74–78Google Scholar
  22. Kirisits T, Dämpfle L, Kräutler K, Woodward S (2013) Hymenoscyphus albidus is not associated with an anamorphic stage and displays slower growth than Hymenoscyphus pseudoalbidus on agar media. For Pathol 43(5):386–389. doi: 10.1111/efp.12042 Google Scholar
  23. Kowalski T, Holdenrieder O (2009) Pathogenicity of Chalara fraxinea. For Pathol 39(1):1–7. doi: 10.1111/j.1439-0329.2008.00565.x CrossRefGoogle Scholar
  24. Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69(3):353–362. doi: 10.1111/j.1574-6941.2009.00728.x PubMedCrossRefGoogle Scholar
  25. McKinney LV, Thomsen IM, Kjær ED, Bengtsson SBK, Nielsen LR (2012) Rapid invasion by an aggressive pathogenic fungus (Hymenoscyphus pseudoalbidus) replaces a native decomposer (Hymenoscyphus albidus): a case of local cryptic extinction? Fungal Ecol 5(6):663–669. doi: 10.1016/j.funeco.2012.05.004 CrossRefGoogle Scholar
  26. Pelaez F, Collado J, Platas G, Overy DP, Martin J, Vicente F, Gonzalez del Val A, Basilio A, De la Cruz M, Tormo JR, Fillola A, Arenal F, Villareal M, Rubio V, Baral HO, Galan R, Bills GF (2011) Phylogeny and intercontinental distribution of the pneumocandin-producing anamorphic fungus Glarea lozoyensis. Mycology 2(1):1–17. doi: 10.1080/21501203.2010.544334 CrossRefGoogle Scholar
  27. Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2011) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41(2):133–142. doi: 10.1111/j.1439-0329.2010.00645.x CrossRefGoogle Scholar
  28. Svrček M (1984) A taxonomic revision of inoperculate discomycetes described by J. Velenovský in the genus Helotium, preserved in National Museum, Prague. Acta Musei Nationalis Pragae, Series B 40(3-4):129–215Google Scholar
  29. Svrček M (1986) New or less known Discomycetes. XIV. Česká Mykologie 40(4):203–217Google Scholar
  30. Triebel D, Baral H-O (1996) Notes on the ascus types in Crocicreas (Leotiales, Ascomycetes) with a characterization of selected taxa. Sendtnera 3:199–218Google Scholar
  31. Unterseher M, Reiher A, Finstermeier K, Otto P, Morawetz W (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Prog 6(3):201–212. doi: 10.1007/s11557-007-0541-1 CrossRefGoogle Scholar
  32. Vainio EJ, Korhonen K, Hantula J (1998) Genetic variation in Phlebiopsis gigantea as detected with random amplified microsatellite (RAMS) markers. Mycol Res 102(2):187–192. doi: 10.1017/s0953756297004577 CrossRefGoogle Scholar
  33. Velenovský J (1934) Monographia Discomycetum Bohemiae, vol 1., PragueGoogle Scholar
  34. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, USA, pp 315–322Google Scholar
  35. Zhao Y-J, Hosoya T, Baral H-O, Hosaka K, Kakishima M (2013) Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon 122(1):25–41. doi: 10.5248/122.25 CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ondřej Koukol
    • 1
    Email author
  • Zuzana Haňáčková
    • 1
    • 2
  • Miloň Dvořák
    • 3
  • Ludmila Havrdová
    • 2
  1. 1.Department of BotanyCharles University in Prague, Faculty of SciencePragueCzech Republic
  2. 2.Department of Biological RisksSilva Tarouca Research Institute for Landscape and Ornamental Gardening Publ. Res. Inst.PrůhoniceCzech Republic
  3. 3.Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic

Personalised recommendations