Skip to main content

Advertisement

Log in

Effect of oxidative stress on cell wall morphology in four pathogenic Candida species

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Candida species are a primary cause of high mortality in immunocompromised and hospitalized patients. The cell wall (CW) of these pathogens is the first structure contacted by the reactive oxygen species (ROS) generated during respiratory bursting in phagocytic cells. The purpose of this work was to evaluate the effect of oxidative stress on CW and some metabolic activities of C. albicans, C. glabrata, C. krusei and C. parapsilosis. Data revealed that C. krusei is more resistant to H2O2, while C. albicans is more resistant to O2 •‾ ions. It was also observed that cells exposed to oxidative stress transited from the normal, oval morphology to other aberrant forms that exhibited indentations and protrusions. In addition, oxidative stress caused damage not only to the CW, but also altered a number of cell biological functions, such as lipidic peroxidation, antioxidant capacity, protein carbonylation and catalase activity. The morphological and other cellular changes undergone by Candida cells exposed to ROS in vitro are possibly similar to those occurring in vivo, and therefore may be important during infection and persistence of the pathogen in the human host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abegg MA, Alabarse PV, Casanova A et al (2010) Response to oxidative stress in eight pathogenic yeast species of the genus Candida. Mycopathologia 170(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Angiolella L, Facchin M, Stringaro A, Maras B, Simonetti N, Cassone A (1996) Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics. J Infect Dis 173(3):684–690

    Article  CAS  PubMed  Google Scholar 

  • Ausubel F, Brent R, Kingston RE et al (2001) Current protocols in molecular biology. John Wiley & Sons, Inc., New York

    Book  Google Scholar 

  • Benaroudj N, Lee DH, Golgberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular protein from damage by oxygen radicals. J Biol Chem 276(26):24261–24267

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C, Rollinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–554

    Article  CAS  PubMed  Google Scholar 

  • Brown A, Haynes K, Quinn J (2009) Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 12:384–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cassone M, Serra P, Mondello F, Girolamo A, Scafetti S, Pistella E, Venditti M (2003) Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol 41(11):5340–5343

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaudhary AK, Nokubo M, Reddy GR et al (1994) Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 265(5178):1580–1582

    Article  CAS  PubMed  Google Scholar 

  • Chauhan N, Latge JP, Calderone R (2006) Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 4(6):435–444

    Article  CAS  PubMed  Google Scholar 

  • Chaves GM, da Silva WP (2012) Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide. Mem Inst Oswaldo Cruz 107(8):998–1005

    Article  CAS  PubMed  Google Scholar 

  • Clemons KV, McCusker JH, Davis RW, Stevens DA (1994) Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis 169(4):859–867

    Article  CAS  PubMed  Google Scholar 

  • Colaço C, Sen S, Thangevalu M, Prinder S, Roser B (1992) Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology 10(9):1007–1011

    Article  PubMed  Google Scholar 

  • Costa-de-Oliveira S, Sampaio-Marques B, Barbosa M et al (2012) An alternative respiratory pathway on Candida krusei: implications on susceptibility profile and oxidative stress. FEMS Yeast Res 12(4):423–429

    Article  CAS  PubMed  Google Scholar 

  • Craig E, Gambill BD, Nelson RJ (1993) Heat shock proteins: Molecular chaperones of protein biogenesis. Microbiol Rev 57(2):402–414

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms. Science 223(4637):701–703

    Article  CAS  PubMed  Google Scholar 

  • Cruz Ch R, Piontelli LE (2011) Invasive fungal disease in patients from five hospitals in the Valparaiso region, Chile: 2004 to 2009. Rev Chilena Infectol 28:123–129

    Article  PubMed  Google Scholar 

  • Cuéllar-Cruz M, Briones-Martin-del-Campo M, Canas-Villamar I et al (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7(5):814–825

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuéllar-Cruz M, Castaño I, Arroyo-Helguera O, De Las Peñas A (2009) Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. Mem Inst Oswaldo Cruz 104(4):649–654

    Article  PubMed  Google Scholar 

  • Cuéllar-Cruz M, López-Romero E, Villagómez-Castro JC, Ruiz-Baca E (2012) Candida species: new insights into biofilm formation. Future Microbiol 7(6):755–771

    Article  PubMed  Google Scholar 

  • Cuéllar-Cruz M, Gutiérrez-Sánchez G, López-Romero E, Ruiz-Baca E, Villagómez-Castro JL, Rodríguez-Sifuentes JL (2013) Identification of Candida albicans heat shock proteins and Candida glabrata and Candida krusei enolases involved in the response to oxidative stress. Cent Eur J Biol 8(4):337–345

    Article  Google Scholar 

  • Cuéllar-Cruz M, López-Romero E, Ruíz-Baca E, Zazueta-Sandoval R (2014) Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol. doi:10.1007/s00284-014-0651-3

    PubMed  Google Scholar 

  • de Sá RA, de Castro FA, Eleutherio EC, de Souza RM, da Silva JF, Pereira MD (2013) Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Braz J Microbiol 44(3):993–1000

    Article  PubMed Central  PubMed  Google Scholar 

  • Deorukhkar SC, Saini S, Mathew S (2014) Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int J Microbiol 2014:456878

    Article  PubMed Central  PubMed  Google Scholar 

  • Erjavec N, Nyström T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(26):10877–10881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Estruch F (2000) Stress contolled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol 24(4):469–486

    Article  CAS  Google Scholar 

  • Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2:64. doi:10.3389/fonc.2012.00064

  • Feng Z, Hu W, Marnett LJ, Tang MS (2006) Malondialdehyde, a major endogenous lipid peroxidation product, sensitizes human cells to UV- and BPDE-induced killing and mutagenesis through inhibition of nucleotide excision repair. Mutat Res 601(1–2):125–136

    Article  CAS  PubMed  Google Scholar 

  • Fradin C, De Groot P, MacCallum D et al (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56(2):397–415

    Article  CAS  PubMed  Google Scholar 

  • González-Párraga P, Hernández JA, Argüelles JC (2003) Role of antioxidant enzymatic defences against oxidative stress H2O2 and the acquisition of oxidative tolerance in Candida albicans. Yeast 20(14):1161–1169

    Article  PubMed  Google Scholar 

  • Gónzalez-Párraga P, Alonso-Monge R, Plá J, Argüelles JC (2010) Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways. FEMS Yeast Res 10(6):747–756

    Article  PubMed  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) Sleeping beauty: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68(2):187–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutteridge JM (1994) Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 91(2–3):133–140

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Park SJ, Choi SJ, Park JY, Lee KH (2013) Features of macrophages induced by various morphological structures of Candida albicans. J Microbiol Biotechnol 23(7):1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose syntesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the termal stability of proteins in vitro. Eur J Biochem 219(1–2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Hurtado-Nedelec M, Makni-Maalej K, Gougerot-Pocidalo MA, Dang PM, El-Benna J (2014) Assessment of priming of the human neutrophil respiratory burst. Methods Mol Biol 1124:405–412

    Article  PubMed  Google Scholar 

  • Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS, Kang SO (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiol 148(Pt 11):3705–3713

    CAS  Google Scholar 

  • Hwang CS, Baek YU, Yim HS, Kang SO (2003) Protective roles of mitocondrial manganese-containing superoxide dismutase against various stresses in Candida albicans. Yeast 20(11):929–941

    Article  CAS  PubMed  Google Scholar 

  • Jackson S, Coulthwaite L, Loewy Z, Scallan A, Verran J (2014) Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces. J Prosthet Dent. doi:10.1016/j.prosdent.2014.02.003

    Google Scholar 

  • Kaloriti D, Tillmann A, Cook E et al (2012) Combinatorial stresses kill pathogenic Candida species. Med Mycol 50:699–709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kan VL, Geber A, Bennett JE (1996) Enhanced oxidative killing of azole resistant Candida glabrata strains with ERG11 deletion. Antimicrob Agents Chemother 40(7):1717–1719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karkowska-Kuleta J, Kedracka-Krok S, Rapala-Kozik M et al (2011) Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicans cell wall: Identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule. Peptides 32(12):2488–2496

    Article  CAS  PubMed  Google Scholar 

  • Kusch H, Engelmann S, Albrecht D, Morschhäuser J, Hecker M (2007) Proteomic analysis of the oxidative stress response in Candida albicans. Proteomics 7:686–697

    Article  CAS  PubMed  Google Scholar 

  • Low CY, Rotstein C (2011) Emerging fungal infections in immunocompromised patients. F1000 Med Rep 3:14. doi:10.3410/M3-14

  • Marnett LJ (2002) Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181–182:219–222

    Article  PubMed  Google Scholar 

  • Martchenko M, Alarco AM, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15(2):456–467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez JP, Gil ML, Casanova JL, López-Ribot J, García de Lomas J, Sentandreu R (1990) Wall mannoproteins in cells from colonial phenotypic variants of Candida albicans. J Gen Microbiol 136(12):2421–2432

    Article  PubMed  Google Scholar 

  • Martínez-Esparza M, Tapia-Abellán A, Vitse-Standaert A et al (2011) Glycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages. Glycobiology 21(6):796–805

    Article  PubMed  Google Scholar 

  • McCullough MJ, Clemons KV, Farina C, McCusker JH, Stevens DA (1998) Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method. J Clin Microbiol 36(2):557–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michán C, Pueyo C (2009) Growth phase-dependent variations in transcript profiles for thioredoxin- and glutathione-dependent redox systems followed by budding and hyphal Candida albicans cultures. FEMS Yeast Res 9(7):1078–1090

    Article  PubMed  Google Scholar 

  • Miramón P, Kasper L, Hube B (2013) Thriving within the host: Candida spp. Interactions with phagocytic cells. Med Microbiol Immunol 202(3):183–195

    Article  PubMed  Google Scholar 

  • Miramón P, Dunker C, Kasper L et al (2014) A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans. Med Mycol 52(3):223–239

    Article  PubMed  Google Scholar 

  • Muñoz P, Bouza E et al (2005) Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis 40(11):1625–1634

    Article  PubMed  Google Scholar 

  • Nguyen AT, Donaldson RP (2005) Metal-catalyzed oxidation induces carbonylation of peroxisomal proteins and loss of enzymatic activities. Arch Biochem Biophys 39(1):25–31

    Article  Google Scholar 

  • Ortega M, Marco A, Soriano A et al (2011) Candida species bloodstream infection: epidemiology and outcome in a single institution from 1991 to 2008. J Hosp Infect 77(2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Packer JE, Slater TF, Willson RL (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278(5706):737–738

    Article  CAS  PubMed  Google Scholar 

  • Pande K, Chen C, Noble SM (2013) Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet 45(9):1088–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedreño Y, González-Párraga P, Martínez-Esparza M, Sentandreu R, Valentín E, Argüelles JC (2007) Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress. Microbiol 153(Pt 5):1372–1381

    Article  Google Scholar 

  • Piper PW (1993) Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11(4):339–355

    Article  CAS  PubMed  Google Scholar 

  • Proud CG (2002) Regulation of mammalian translation factors by nutrients. Eur J Biochem 269(22):5338–5349

    Article  CAS  PubMed  Google Scholar 

  • Reales-Calderón JA, Martínez-Solano L, Martínez-Gomariz M, Nombela C, Molero G, Gil C (2012) Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus. J Proteomics 75(15):4734–4746

    Article  PubMed  Google Scholar 

  • Rockenfeller P, Madeo F (2008) Apoptotic death of ageing yeast. Exp Gerontol 43:876–881

    Article  CAS  PubMed  Google Scholar 

  • Roetzer A, Gregori C, Jennings AM et al (2008) Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 69(3):603–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roetzer A, Klopf E, Gratz N et al (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585(2):319–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers PL, Vermitsky JP, Edlind TD, Hilliard GM (2006) Proteomic analysis of experimentally induced azole resistance in Candida glabrata. J Antimicrob Chemother 58(2):434–438

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J et al. (2012) Dimorphic fungi: their importance as models for differentiation and fungal pathogenesis. Bentham Science Publishers. doi:10.2174/97816080536431120101

  • Ruy F, Vercesi AE, Kowaltowski AJ (2006) Inhibition of specific electron transport pathways leads to oxidative stress and decreased Candida albicans proliferation. J Bioenerg Biomembr 38(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Fresneda R, Martínez-Esparza M, Maicas S, Argüelles JC, Valentín E (2014) In Candida parapsilosis the ATC1 Gene Encodes for an Acid Trehalase Involved in Trehalose Hydrolysis, Stress Resistance and Virulence. PLoS One 9(6):e99113

    Article  PubMed Central  PubMed  Google Scholar 

  • Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62(1):10–24

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36:288–305

    Article  CAS  PubMed  Google Scholar 

  • Soll DR (1992) High-frecuency switching in Candida albicans. Clin Microbiol Rev 5(2):183–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivasa K, Kim NR, Kim J et al (2012) Characterization of a putative thioredoxin peroxidase prx1 of Candida albicans. Mol Cells 33(3):301–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sundaram A, Grant CM (2014) Oxidant-specific regulation of protein synthesis in Candida albicans. Fungal Genet Biol 67:15–23

    Article  CAS  PubMed  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15(6):319–326

    Article  CAS  PubMed  Google Scholar 

  • Thevelein JM, Brambl R, Marzluf GA (1996) Regulation of trehalose metabolism and its relevance to cell growth and function. In: The mycota, vol 3. Springer Verlag, Heilderberg, pp 395–414

    Google Scholar 

  • Tillmann A, Gow NA, Brown AJ (2011) Nitric oxide and nitrosative stress tolerance in yeast. Biochem Soc Trans 39(1):219–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58(3):9410–9414

    Article  Google Scholar 

  • Zakrajšek T, Raspor P, Jamnik P (2011) Saccharomyces cerevisiae in the stationary phase as a model organism-characterization at cellular and proteome level. J Proteomics 74(12):2837–2845

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support granted to M. Cuéllar-Cruz by Proyecto-Institucional-UGTO-id202/2013 from Universidad de Guanajuato, México, and PROMEP-UGTO-PTC-328. The authors would like to thank John Dye for his invaluable support in reviewing the manuscript. We are also grateful to Prof. M.A. Martínez-Rivera (Departamento de Microbiología, ENCB-IPN, México), for kindly providing the clinical isolates of C. albicans, C. glabrata, C. krusei and C. parapsilosis used in this study. We are also grateful to Dr. Mario Ávila-Rodríguez and M. en C. Paulina Lozano-Sotomayor for the facilities provided and technical assistance in the SEM microphotographs. We also thank Dr. B. Franco, F. Padilla and C. Leal for providing some of the chemicals and equipment.

Financial and competing interest disclosure

The authors declare that there were no conflicts of interest with any organization or entity with a financial interest or financial conflict with the material discussed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayra Cuéllar-Cruz.

Additional information

Dedication: This contribution is dedicated to the late Julio César Cuéllar-Cruz. He will always be remembered as the beloved brother who always inspired me to pursuit my goals. He was also an example of perseverance to our family.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Quijas, M.D., Zazueta-Sandoval, R., Obregón-Herrera, A. et al. Effect of oxidative stress on cell wall morphology in four pathogenic Candida species. Mycol Progress 14, 8 (2015). https://doi.org/10.1007/s11557-015-1028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-015-1028-0

Keywords

Navigation