Mycological Progress

, 13:1005 | Cite as

Scutellospora savannicola: redescription, epitypification, DNA barcoding and transfer to Dentiscutata

  • Claudia Krüger
  • Christopher Walker
  • Arthur Schüßler
Original Article

Abstract

An arbuscular mycorrhizal fungus (AMF) was isolated from a south Ecuadorian reforestation site in the vicinity of a pristine mountain rainforest ecosystem. Morphologically, it corresponded with the description of an AMF first described from Cuba as Gigaspora savannicola, before it was placed in Scutellospora. No living culture of this species has been available previously to allow detailed morphological review or DNA barcoding. After comparison of the morphology of the holotype and authenticated specimens with that of the Ecuadorian isolate, it was concluded that they are conspecific. A detailed redescription of the species is provided, including morphological characters not included in the original description, and an epitype is designated. To provide an extended DNA barcode for this AMF species, intraspecific variants of the near full-length small subunit rRNA gene (SSU) and a rDNA region comprising part of the SSU, the internal transcribed spacer (ITS) region including the 5.8S rRNA gene, and part of the large subunit rRNA gene (LSU) were sequenced. Phylotaxonomic analyses confirmed the classification in the genus Scutellospora sensu lato in a phylogenetic clade that, based on questionable evidence, was considered to circumscribe a distinct genus, Fuscutata. Recently, this genus was merged with Dentiscutata. Consequently, we move S. savannicola (=Fuscutata savannicola = Gigaspora savannicola) to the genus Dentiscutata (Gigasporaceae).

Keywords

Arbuscular mycorrhizal fungi (AMF) Dentiscutata savannicola Epitypification Redescription Scutellospora savannicola South Ecuador 

References

  1. Anon (1969) Royal Botanic Garden Edinburgh. Flora of the British fungi. Colour identification chart. Her Majesty’s Stationery Office, EdinburghGoogle Scholar
  2. Anon (1990) Munsell Soil Color Charts. 1990 Edition Revised. Munsell Color, BaltimoreGoogle Scholar
  3. Bendix J, Rollenbeck R, Richter M, Fabian P, Emck P (2008) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a Tropical Mountain Ecosystem of Ecuador (Ecol Stud 198). Springer, Berlin Heidelberg, pp 63–74CrossRefGoogle Scholar
  4. Błaszkowski J (1991) Polish Glomales VIII. Scutellispora [sic] nodosa, a new species with knobby spores. Mycologia 83:537–542CrossRefGoogle Scholar
  5. Cunningham JL (1972) A miracle mounting fluid (Hoyer’s) for permanent whole-mounts of microfungi. Mycologia 64:906–911CrossRefGoogle Scholar
  6. Ferrer RL, Herrera RA (1981) El genero Gigaspora Gerdemann et Trappe (Endogonaceae) en Cuba. Rev Jardin Bot Nacional Habana 1(1):43–66Google Scholar
  7. Franke M, Morton JB (1994) Ontogenetic comparisons of arbuscular mycorrhizal fungi Scutellospora heterogama and Scutellospora pellucida: revision of taxonomic character concepts, species descriptions, and phylogenetic hypotheses. Can J Botany 72:122–134CrossRefGoogle Scholar
  8. Hyde KD, Zhang Y (2008) Epitypification: should we epitypify? J Zhejiang Univ (Sci) 9:842–846CrossRefGoogle Scholar
  9. Kornerup A, Wanscher JH (1984) Methuen Handbook of Colour. Eyre Methuen, LondonGoogle Scholar
  10. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species-level detection of arbuscular mycorrhizal fungi: one PCR primer set for all AMF. New Phytol 183:212–223PubMedCrossRefGoogle Scholar
  11. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. doi:10.1111/j.1469-8137.2011.03962.x PubMedCrossRefGoogle Scholar
  12. Lanfranco L, Bianciotto V, Lumini E, Souza M, Morton JB, Bonfante P (2001) A combined morphological and molecular approach to characterize isolates of arbuscular mycorrhizal fungi in Gigaspora (Glomales). New Phytol 152:169–179. doi:10.1046/j.0028-646x.2001.00233.x CrossRefGoogle Scholar
  13. Makeschin F, Haubrich F, Abiy M, Burneao JI, Klinger T (2008) Pasture management and natural soil regeneration. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador (Ecol Stud 198). Springer, Berlin Heidelberg, pp 397–408CrossRefGoogle Scholar
  14. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersma JH, Turland N (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile 154. A.R.G. Gantner Verlag KG, Ruggell, Liechtenstein. ISBN 978-3-87429-425-6. (http://www.iapt-taxon.org/nomen/main.php)
  15. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp 1–8Google Scholar
  16. Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496PubMedCrossRefGoogle Scholar
  17. Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characteristics. Mycologia 93:181–195CrossRefGoogle Scholar
  18. Mosse B (1970) Honey-coloured, sessile Endogone spores. III. Wall structure. Arch Microbiol 74:146–159Google Scholar
  19. Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Brit Mycol Soc 51:469–483. doi:10.1016/S0007-1536(68)80014-2 CrossRefGoogle Scholar
  20. Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360Google Scholar
  21. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531PubMedCrossRefGoogle Scholar
  22. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246CrossRefGoogle Scholar
  23. Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families. Arthur Schüßler and Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic copy freely available online at http://www.amf-phylogeny.com. Printed copy available under ISBN-13: 978–1466388048, ISBN-10: 1466388048Google Scholar
  24. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1412–1421Google Scholar
  25. Schüßler A, Krüger M, Walker C (2011) Revealing natural relationship amongst arbuscular mycorrhizal fungi: culture line BEG47 represents Diversipora epigaeae, not Glomus versiforme. PLoS One 6(8):e23333PubMedCentralPubMedCrossRefGoogle Scholar
  26. Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197PubMedCrossRefGoogle Scholar
  27. Spain JL, de Miranda JC (1996) Scutellospora cerradensis: an ornamented species in the Gigasporaceae (Glomales) from the Cerrado region of Brazil. Mycotaxon 60:129–136Google Scholar
  28. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  29. Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187PubMedCrossRefGoogle Scholar
  30. Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474PubMedCrossRefGoogle Scholar
  31. Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404Google Scholar
  32. Walker C (1983) Taxonomic concepts in the Endogonaceae: spore wall characteristics in species descriptions. Mycotaxon 18:443–455Google Scholar
  33. Walker C (2005) A simple blue staining technique for arbuscular mycorrhizal and other root-inhabiting fungi. Inoculum 56:68–69Google Scholar
  34. Walker C, Diederichs C (1989) Scutellospora scutata sp. nov., a newly described endomycorrhizal fungus from Brazil. Mycotaxon 35:357–361Google Scholar
  35. Walker C, Sanders FE (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe. Mycotaxon 27:169–182Google Scholar
  36. Walker C, Vestberg M (1994) A simple and inexpensive method for producing and maintaining closed pot cultures of arbuscular mycorrhizal fungi. J Agr Sci Finland 3:233–240Google Scholar
  37. Walker C, Vestberg M, Demircik F, Stockinger H, Schüβler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153PubMedCrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claudia Krüger
    • 1
  • Christopher Walker
    • 2
  • Arthur Schüßler
    • 1
  1. 1.Genetics, Department BiologyLudwig-Maximilians-University MunichMunichGermany
  2. 2.Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK, and School of Earth Sciences and EnvironmentUniversity of Western AustraliaPerthAustralia

Personalised recommendations