Mycological Progress

, Volume 13, Issue 3, pp 445–470

Morphology and molecules: the Sebacinales, a case study

  • Franz Oberwinkler
  • Kai Riess
  • Robert Bauer
  • Sigisfredo Garnica
Original Article

Abstract

Morphological and molecular discrepancies in the biodiversity of monophyletic groups are challenging. The intention of this study was to find out whether the high molecular diversity in Sebacinales can be verified by micromorphological characteristics. Therefore, we carried out molecular and morphological studies on all generic type species of Sebacinales and additional representative taxa. Our results encouraged us to disentangle some phylogenetic and taxonomic discrepancies and to improve sebacinalean classifications. This comprises generic circumscriptions and affiliations, as well as higher taxon groupings. At the family level, we redefined the Sebacinaceae, formerly the Sebacinales group A, and set it apart from the Sebacinales group B. For taxonomical purposes, it seems appropriate to refer Paulisebacina, Craterocolla, Chaetospermum, Globulisebacina, Tremelloscypha, and Sebacina to the Sebacinaceae and Piriformospora, and Serendipita to the Sebacinales group B. At the lower taxonomic level, we propose within the Sebacinaceae (1) to introduce Paulisebacina for Sebacina allantoidea, (2) to transfer Efibulobasidium rolleyi into a new monotypic genus, Globulisebacina, (3) to include Tremellostereum in Tremelloscypha, (4) to transfer Sebacina amesii into Tremelloscypha, (5) to combine S. helvelloides and S. concrescens in their own genus, Helvellosebacina, (6) to transfer Tremellodendron spp. into Sebacina, (7) to define S. epigaea s.str. without cystidia and flagelliform dikaryophyses, but with star-shaped resting spores, and (8) to separate S. cystidiata with simultaneously irregular germinating spores and inconspicuous cystidia, and S. flagelliformis with flagelliform dikaryophyses from S. epigaea s.str. Additional clades in Sebacina, based on molecular differences, cannot be distinguished morphologically at present.

Supplementary material

11557_2014_983_MOESM1_ESM.docx (108 kb)
Supplementary File 1(DOCX 107 kb)
11557_2014_983_MOESM2_ESM.docx (143 kb)
Supplementary File 2(DOCX 143 kb)
11557_2014_983_MOESM3_ESM.xls (78 kb)
Supplementary File 3(XLS 77.5 kb)
11557_2014_983_MOESM4_ESM.pdf (443 kb)
Supplementary File 4(PDF 443 kb)

References

  1. Bandala VM, Montoya L, Villegas R (2011) Tremelloscypha gelatinosa (Sebacinales) from tropical deciduous Gymnopodium forests in southern Mexico. Mycotaxon 118:147–157CrossRefGoogle Scholar
  2. Basiewicz M, Weiß M, Kogel K-H, Langen G, Zorn H, Zuccaro A (2012) Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal Biol 116:204–213PubMedCrossRefGoogle Scholar
  3. Berkley MJ (1856) Decades LIX – LX. Rio Negro fungi. Hooker’s Jour Bot 8:233–241Google Scholar
  4. Berkley MJ, Broome CE (1848) Notices of British fungi. Ann Mag Nat Hist 2:259–268CrossRefGoogle Scholar
  5. Bodman MC (1942) The genus Tremellodendron. Am Midland Nat 27:203–216CrossRefGoogle Scholar
  6. Bourdot H, Galzin A (1927) Hyménomycètes de France, Hetérobasidiés – Homobasidiés gymnocarpes. SceauxGoogle Scholar
  7. Brefeld O (1888) Untersuchungen aus dem Gesammtgebiete der Mykologie 7:99Google Scholar
  8. Burt EA (1915) The Thelephoraceae of North America V. Tremellodendron, Eichleriella, and Sebacina. Ann Mo Bot Gard 2:731–771CrossRefGoogle Scholar
  9. Corner EJH (1968) A monograph of Thelephora. Beih Nova Hedwigia 27:1–110Google Scholar
  10. De Fonseka RN (1960) The morphology of Chaetospermum chaetosporum. Trans Brit Mycol Soc 43:631–636CrossRefGoogle Scholar
  11. Donk MA (1958) The generic names proposed for Hymenomycetes – VIII. Auriculariaceae, Septobasidiaceae, Tremellaceae, Dacrymycetaceae. Taxon 7:164–178, 193–207, 236–250Google Scholar
  12. Garnica S, Riess K, Bauer R, Oberwinkler F, Weiß M (2013) Phylogenetic diversity and structure of sebacinoid fungi associated with plant communities along an altitudinal gradient. FEMS Microbiol Ecol 83:265–278PubMedCrossRefGoogle Scholar
  13. Garnica S, Riess K, Schön ME, Oberwinkler F, Setaro S (2014) Divergence times, nutrition modes and lineage diversifications in the evolution of Sebacinales (in prep.)Google Scholar
  14. Glen M, Tommerup IC, Bougher NL, O Brien PA (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247PubMedCrossRefGoogle Scholar
  15. Hauerslev K (1993) New tremellaceous fungi from Denmark. Mycotaxon 49:217–233Google Scholar
  16. Henkel TW, Roberts P, Aime MC (2004) Sebacinoid species from the Pakaraima mountains of Guyana. Mycotaxon 89:433–439Google Scholar
  17. Henkel TW, Aime MC, Chin MML, Miller ST, Vilgalys R, Smith ME (2011) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana shield. Biodivers Conserv 21:2195–2220CrossRefGoogle Scholar
  18. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kirschner R, Oberwinkler F (2002) Sebacina allantoidea sp. nov. Cryptogam Mycol 23:129–133Google Scholar
  20. Kirschner R, Oberwinkler F (2009) Supplementary notes on Basidiopycnis hyalina (Basidiomycota, Atractiellales) and its anamorph. Mycotaxon 109:29–38CrossRefGoogle Scholar
  21. Lloyd CG (1916) Mycological Notes No. 42. Mycol Writ 5:576–588Google Scholar
  22. Lloyd CG (1922) Mycological Notes No. 67. Mycol Writ 7:1137–1168Google Scholar
  23. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available from http://mesquiteproject.org/
  24. McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247CrossRefGoogle Scholar
  25. Mühlmann O, Peintner U (2008) Ectomycorrhiza of Kobresia myosuroides at a primary successional glacier forefront. Mycorrhiza 18:355–362PubMedCrossRefGoogle Scholar
  26. Nag Raj TR (1993) Coelomycetous anamorphs with appendage-bearing conidia. Mycol Publ, Waterloo, Ontario, Canada, 1101 ppGoogle Scholar
  27. Oberwinkler F (1963) Niedere Basidiomyceten aus Südbayern III. Die Gattung Sebacina Tul. s. 1. Ber Bayer Bot Ges 36:41–55Google Scholar
  28. Oberwinkler F (1964) Intrahymeniale Heterobasidiomyceten. Fruchtkörperlose Sebacina-Sippen und ihre systematische Stellung. Nova Hedw 7:483–499Google Scholar
  29. Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiß M, Garnica S, Zuccaro A (2013) Enigmatic Sebacinales. Mycol Prog 12:1–27CrossRefGoogle Scholar
  30. Palmer JM, Lindner DL, Volk TJ (2008) Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin. Mycorrhiza 19:27–36PubMedCrossRefGoogle Scholar
  31. Patouillard MN (1888) Note sur une Tuberculariée graminicole. Bull Soc Mycol Fr 4:39–40Google Scholar
  32. Persoon CH (1796) Observationes mycologicae seu descriptiones tam novorum, quam notabilium fungorum. Lipsiae, apud Petrum Phillippum WolfGoogle Scholar
  33. Rajeshkumar KC, Singh PN, Yadav LS, Swami SV, Singh SK (2010) Chaetospermum setosum sp. nov. from the Western Ghats, India. Mycotaxon 113:397–404CrossRefGoogle Scholar
  34. Reid DA (1979) Tremelloscypha and Papyrodiscus—two new genera of Basidiomycetes from Australia. Beih Sydowia Ann Myc Ser II 8:332–334Google Scholar
  35. Riess K, Oberwinkler F, Bauer R, Garnica S (2013) High genetic diversity at the regional scale and possible speciation in Sebacina epigaea and S. incrustans. BMC Evol Biol 13:102. doi:10.1186/1471-2148-13-102 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Riess K, Oberwinkler F, Bauer R, Garnica S (2014) Communities of endophytic Sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov. PLoS ONE 9(4):e94676. doi:10.1371/journal.pone.0094676 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rineau F (2008) Étude des conséquences du chaulage sur la structure et le fonctionnement des communautés d’ectomycorrhizes des forêts des Vosges. Thèse pour l’obtention du titre de docteur de l’Université Henri Poincaré, NancyGoogle Scholar
  38. Rineau F, Garbaye J (2009) Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts? Mycorrhiza 19:493–500PubMedCrossRefGoogle Scholar
  39. Roberts P (1993) Exidiopsis species from Devon, including the new segregate genera Ceratosebacina, Endoperplexa, Microsebacina, and Serendipita. Mycol Res 97:467–478CrossRefGoogle Scholar
  40. Rungjindamai N, Skayaroj J, Plaingam N, Somrithipol S, Jones EBG (2008) Putative basidiomycete teleomorphs and phylogenetic placement of the coelomycete genera: Chaetospermum, Giulia and Mycotribulus based on nu-rDNA sequences. Mycol Res 112:802–810PubMedCrossRefGoogle Scholar
  41. Ryvarden L (1986) Tremellostereum (Tremellaceae) nov. gen. Mycotaxon 27:321–323Google Scholar
  42. Saccardo PA (1892) Sylloge Fungorum 10, PaduaGoogle Scholar
  43. Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878PubMedCrossRefGoogle Scholar
  44. Selosse M-A, Dubois M-P, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069PubMedCrossRefGoogle Scholar
  45. Setaro S, Weiß M, Oberwinkler F, Kottke I (2006) Sebacinales form ectendomycorrhizae with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365PubMedCrossRefGoogle Scholar
  46. Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–89CrossRefGoogle Scholar
  47. Tedersoo L, Suvi T, Larsson E, Kõljalg U (2006) Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol Res 110:734–748PubMedCrossRefGoogle Scholar
  48. Tedersoo L, Abarenkov K, Nilsson RH, Schüssler A, Grelet G-A, Kohout P, Oja J, Bonito GM, Vledre V, Jairus T, Ryberg M, Larsson KH, Kõljalg U (2011) Tidying up international sequence databases: ecological, geographical and sequence quality annotation of ITS sequences of mycorrhizal fungi. PLoS ONE 6(69):e24940. doi:10.1371/journal.pone.0024940 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Tedersoo L, Arnold E, Hansen K (2013) Novel aspects in the life cycle and biotrphic interactions in Pezizomycetes (Ascomycota, Fungi). Mol Ecol 22:1488–1493PubMedCrossRefGoogle Scholar
  50. Tulasne LRE, Tulasne C (1872) Fungi Tremellini et leurs alliés. Ann Sci Nat Bot 15:225–226Google Scholar
  51. Urban A, Weiß M, Bauer R (2003) Ectomycorrhizae involving sebacinoid mycobionts. Mycol Res 107:3–14PubMedCrossRefGoogle Scholar
  52. Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  53. Walker JF, Parrent JL (2004) Molecular phylogenetic evidence for the mycorrhizal status of Tremellodendron (Sebacinaceae). Mem N Y Bot Gard 89:291–296Google Scholar
  54. Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70:41–46CrossRefGoogle Scholar
  55. Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381CrossRefGoogle Scholar
  56. Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231CrossRefGoogle Scholar
  57. Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids I. New Phytol 66:631–641CrossRefGoogle Scholar
  58. Weiß M, Oberwinkler F (2001) Phylogenetic relationships in Auriculariales and related groups—hypotheses derived from nuclear ribosomal DNA sequences. Mycol Res 105:403–415CrossRefGoogle Scholar
  59. Weiß M, Selosse M-A, Rexer K, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorhizal potential. Mycol Res 108:1003–1010PubMedCrossRefGoogle Scholar
  60. Weiß M, Garnica S, Bauer R, Oberwinkler F (2010) Serendipitaceae, a new family in the Sebacinales. Poster IMC IX, EdinburghGoogle Scholar
  61. Weiß M, Sykorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6(2):e16793. doi:10.1371/journal.pone.0016793 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Weiß M, Garnica S, Bauer R, Oberwinkler F (2012) Serendipitaceae, a new family in the Sebacinales. Poster Ann Meeting German Phytopath SocGoogle Scholar
  63. Wells K (1975) Studies of some Tremellaceae. V. A new genus, Efibulobasidium. Mycologia 67:147–156CrossRefGoogle Scholar
  64. Wells K, Bandoni RJ (2001) Heterobasidiomycetes. In: McLaughlin, DJ, EG McLaughlin, and PA Lemke (eds.): The Mycota VII Part B, pp. 85–120Google Scholar
  65. Wells K, Oberwinkler F (1982) Tremelloscypha gelatinosa, a species of a new family Sebacinaceae. Mycologia 74:325–331CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Franz Oberwinkler
    • 1
  • Kai Riess
    • 1
  • Robert Bauer
    • 1
  • Sigisfredo Garnica
    • 1
  1. 1.Evolutionäre Ökologie der PflanzenUniversität TübingenTübingenGermany

Personalised recommendations