Mycological Progress

, Volume 12, Issue 4, pp 755–761 | Cite as

Ophiocordyceps sessilis sp. nov., a new species of Ophiocordyceps on Camponotus ants in Japan

  • Yoshitaka Kaitsu
  • Kiminori Shimizu
  • Eiji Tanaka
  • Satoshi Shimano
  • Shigeru Uchiyama
  • Chihiro Tanaka
  • Noriko Kinjo
Original Article

Abstract

Ophiocordyceps sessilis, a new species of Ophiocordycipitaceae, Hypocreales, was found on Camponotus obscuripes ants, where the ants were primarily infected by another close relative, O. pulvinata. Morphological observation clearly indicated that O. sessilis and O. pulvinata are distinct species. Ophiocordyceps sessilis exhibited superficial development of perithecia and ascospore disarticulation into part-spores, not known in O. pulvinata. Nucleotide sequence data suggested that O. sessilis belongs in Ophiocordyceps, Ophiocordycipitaceae. Molecular data also indicated that O. sessilis is a close relative of O. cuboidea, O. prolifica, O. paracuboidea, and O. ryogamiensis, which are all known to produce part-spores. Since O. sessilis is always associated with ants infected by O. pulvinata, O. sessilis may be a hyperparasite of O. pulvinata.

Keywords

Camponotus ant Hyperparasite Hypocreales Ophiocordycipitaceae Taxonomy 

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 17:3389–3402. doi:10.1093/nar/25.17.3389 CrossRefGoogle Scholar
  2. Ayel A, Van Vooren N (2009) Catalogue des Ascomycètes récoltés dans la Loire. 3e partie: Pyrénomycètes sensu lato et compléments. Bull Mens Soc Linn Lyon 78:237–261Google Scholar
  3. Ban S, Sakane T, Toyama K, Nakagiri A (2009) Teleomorph-anamorph relationships and reclassification of Cordyceps cuboidea and its allied species. Mycoscience 50:261–272. doi:10.1007/s10267-008-0480-y CrossRefGoogle Scholar
  4. Chen J-Y, Cao Y-Q, Yang D-R, Li D-R (2011) A new species of Ophiocordyceps (Clavicipitales, Ascomycota) from southwestern China. Mycotaxon 115:1–4. doi:10.5248/115.1 CrossRefGoogle Scholar
  5. de Faria MR, Wraight SP (2007) Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256. doi:10.1016/j.biocontrol.2007.08.001 CrossRefGoogle Scholar
  6. Evans HC, Elliot SL, Hughes DP (2011) Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: four new species described from carpenter ants in Minas Gerais, Brazil. PLoS ONE 6:e17024. doi:10.1371/journal.pone.0017024 PubMedCrossRefGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 38:783–791CrossRefGoogle Scholar
  8. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  9. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  10. Johnson D, Sung G, Hywel-Jones NL, Luangsa-Ard JJ, Bischoff JF, Kepler RM, Spatafora JW (2009) Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota). Mycol Res 113:279–289. doi:10.1016/j.mycres.2008.09.008 PubMedCrossRefGoogle Scholar
  11. Kepler RM, Kaitsu Y, Tanaka E, Shimano S, Spatafora JW (2011) Ophiocordyceps pulvinata sp. nov., a pathogen of ants with a reduced stroma. Mycoscience 52:39–47. doi:10.1007/s10267-010-0072-5 CrossRefGoogle Scholar
  12. Kepler RM, Sung GH, Harada Y, Tanaka K, Tanaka E, Hosoya T, Bischoff JF, Spatafora JW (2012) Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae). Am J Bot 99:552–561. doi:10.3732/ajb.1100124 PubMedCrossRefGoogle Scholar
  13. Kobayasi Y (1941) The genus Cordyceps and its allies. Sci Rep Tokyo Bunrika Daigaku Sect B 5:53–260Google Scholar
  14. Kobayasi Y (1963) Monographic studies of Cordyceps 2. Group parasitic on Cicadidae. Bull Natl Sci Mus 6:286–314Google Scholar
  15. Kobayasi Y (1982) Keys to the taxa of the genera Cordyceps and Torrubiella. Trans Mycol Soc Jpn 23:329–364Google Scholar
  16. Kobayasi Y, Shimizu D (1980) Cordyceps species from Japan 3. Bull Natl Sci Mus Ser B 6:125–145Google Scholar
  17. Kornerup A, Wanscher JH (1978) Methuen handbook of colour. Eyre Methuen, LondonGoogle Scholar
  18. Palfner G, Valenzuela-Muñoz V, Gallardo-Escarate C, Parra LE, Becerra J, Silva M (2012) Cordyceps cuncunae (Ascomycota, Hypocreales), a new pleoanamorphic species from temperate rainforest in southern Chile. Mycol Prog 11:733–739. doi:10.1007/s11557-011-0784-8 CrossRefGoogle Scholar
  19. Paterson RR (2008) Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69:1469–1495. doi:10.1016/j.phytochem.2008.01.027 PubMedCrossRefGoogle Scholar
  20. Petch T (1931) Notes on entomogenous fungi. Trans Br Mycol Soc 16:55–75Google Scholar
  21. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969CrossRefGoogle Scholar
  22. Shimizu D (1997) Illustrated vegetable wasps and plant worms in color. Ie-No-Hikari Association, Tokyo, JapanGoogle Scholar
  23. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59PubMedCrossRefGoogle Scholar
  24. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer, SunderlandGoogle Scholar
  25. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) soft-ware version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  28. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and sirect sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  29. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung G-H (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087. doi:10.3852/mycologia.98.6.1076 PubMedCrossRefGoogle Scholar
  30. Zhou X, Gong Z, Su Y, Lin J, Tang K (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61:279–291. doi:10.1211/jpp.61.03.0002 PubMedCrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yoshitaka Kaitsu
    • 1
  • Kiminori Shimizu
    • 2
  • Eiji Tanaka
    • 3
  • Satoshi Shimano
    • 4
  • Shigeru Uchiyama
    • 5
  • Chihiro Tanaka
    • 6
  • Noriko Kinjo
    • 7
  1. 1.Yanagawa-machi, DateJapan
  2. 2.Medical Mycology Research CenterChiba UniversityChuo-kuJapan
  3. 3.Ishikawa Prefectural UniversityNonoichiJapan
  4. 4.Environmental Education CenterMiyagi University of EducationAramaki 149, Aoba-kuJapan
  5. 5.RIKEN Research Cluster for Innovation Nakamura LaboratoryWakoJapan
  6. 6.Laboratory of Environmental Mycoscience, Graduate School of AgricultureKyoto UniversitySakyo-ku, KyotoJapan
  7. 7.College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan

Personalised recommendations