Mycological Progress

, Volume 12, Issue 2, pp 167–172 | Cite as

A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense

  • Qi-Rui Li
  • Ping Tan
  • Yu-Lan Jiang
  • Kevin D. Hyde
  • Eric H. C. Mckenzie
  • Ali H. Bahkali
  • Ji-Chuan Kang
  • Yong Wang
Original Article

Abstract

A new species of Trichoderma, Trichoderma guizhouense, isolated from soil in Guizhou Province, is described based on morphology and phylogenetic analyses. This species exhibits characteristic Trichoderma morphology but is distinct from related species based on characters of phialides and conidia. Two DNA markers, the translation elongation factor 1 alpha (tef1) and RNA polymerase II subunit b (rpb2) were used for phylogenetic analyses. The correlation between morphological and molecular-based clustering demonstrated two studied isolates are a new species.

Keywords

Ascomycetes Hypocrea Morphology Phylogeny Taxonomy 

Supplementary material

11557_2012_821_MOESM1_ESM.doc (43 kb)
Supplement Table 1Strains used in phylogenetic analyses and their corresponding GenBank accession numbers (DOC 43 kb)
11557_2012_821_MOESM2_ESM.jpg (1.7 mb)
Supplement Fig. 1Topology showing the single most parsimonious tree, inferred by combined ITS and tef1 sequences. Sequences from the two genes were combined with a total of 1093 aligned characters. Among them, 230 characters were parsimony-informative. Tree length of 892 steps, consistency index = 0.6177, retention index = 0.5290, Rescaled consistency index = 0.3268, Homoplasy index = 0.3823. Bootstrap values smaller than 50 % are not shown. Thickened branches indicate Bayesian posterior probabilities ≥95 %. The tree was rooted to Trichoderma oblongisporum (JPEG 1733 kb)

References

  1. Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025PubMedCrossRefGoogle Scholar
  2. Bissett J, Szakacs G, Nolan CA, Druzhinina I, Gradinger C, Kubicek CP (2003) New species of Trichoderma from Asia. Can J Bot 81:570–586CrossRefGoogle Scholar
  3. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  4. Chaverri PC, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103(1):139–151PubMedCrossRefGoogle Scholar
  5. Cunningham CW (1997) Can three incongruency tests predict when data should be combined? Mol Biol Evol 14:733–740PubMedCrossRefGoogle Scholar
  6. Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57:2703–2720PubMedGoogle Scholar
  7. Druzhinina I, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828PubMedCrossRefGoogle Scholar
  8. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–320CrossRefGoogle Scholar
  9. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  10. Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631PubMedCrossRefGoogle Scholar
  11. Jaklitsch WM (2009) European species of Hypocrea part I. The green-spored species. Stud Mycol 63:1–91PubMedCrossRefGoogle Scholar
  12. Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48(1):1–250PubMedCrossRefGoogle Scholar
  13. Jaklitsch WM, Samuels GJ, Dodd SL, Lu BS, Druzhinina IS (2006) Hypocrea rufa/ Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Mycol 56:135–177PubMedCrossRefGoogle Scholar
  14. Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808PubMedCrossRefGoogle Scholar
  15. Nirenberg HI (1976) Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt Biol Land- Forstw Berlin-Dahlem 169:i–v + 1–117Google Scholar
  16. Park MS, Bae KS, Yu SH (2006) Two new species of Trichoderma associated with green mold epidemic of oyster mushroom cultivation in Korea. Mycobiology 34:111–113CrossRefGoogle Scholar
  17. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  18. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedCrossRefGoogle Scholar
  19. Ronquist F, Huelsenbeck JP (2003) MrBays 3: Bayesian phylogenetic inference under mixed model. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  20. Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935CrossRefGoogle Scholar
  21. Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170PubMedCrossRefGoogle Scholar
  22. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, SunderlandGoogle Scholar
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustsal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  24. Turner D, Kovacs W, Kuhls K et al (1997) Biogeography and phenotypic variation in Trichoderma sect. Longibrachiatum and associated Hypocrea species. Mycol Res 101:449–459CrossRefGoogle Scholar
  25. Warcup JH (1955) On the origin of colonies of fungi developing on soil dilution plates. Trans Br Mycol Soc 38:298–301Google Scholar
  26. White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  27. Yazdani M, Yap CK, Abdullah F, Tan SG (2010) An in vitro study on the adsorption and uptake capacity of Zn by the bioremediator Trichoderma atroviride. EnvironmentAsia 3(1):53–59Google Scholar
  28. Yu ZF, Qiao M, Zhang Y, Zhang KQ (2007) Two new species of Trichoderma from Yunnan, China. Anton Leeuw Int J G 92:101–108CrossRefGoogle Scholar
  29. Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. Genomics 3:1–15Google Scholar

Copyright information

© German Mycological Society and Springer 2012

Authors and Affiliations

  • Qi-Rui Li
    • 1
    • 2
  • Ping Tan
    • 1
  • Yu-Lan Jiang
    • 1
  • Kevin D. Hyde
    • 3
  • Eric H. C. Mckenzie
    • 4
  • Ali H. Bahkali
    • 5
  • Ji-Chuan Kang
    • 2
  • Yong Wang
    • 1
  1. 1.Department of Plant PathologyGuizhou UniversityGuiyangChina
  2. 2.Guizhou Biochem-Engineering Research CenterGuizhou UniversityGuiyangChina
  3. 3.School of ScienceMae Fah Luang UniversityChiang RaiThailand
  4. 4.Landcare ResearchAucklandNew Zealand
  5. 5.College of Science, Botany and Microbiology DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations