Mycological Progress

, Volume 11, Issue 3, pp 827–833 | Cite as

Lepidostroma vilgalysii, a new basidiolichen from the New World

  • Brendan P. Hodkinson
  • Jessie K. Uehling
  • Matthew E. Smith
Original Article


The lichenized basidiomycete Lepidostroma vilgalysii from Mexico is described based on morphological analyses. The species is only the second representative of the family Lepidostromataceae documented from the New World, and is one of the few described lichens with an inverted morphology, with the algae in a layer at the base of the thallus. Molecular sequence data from the nuclear ribosomal LSU locus are used to confirm the placement of the holotype in Lepidostroma and to evaluate the molecular distinctiveness of the species from all other described species in the family and genus.


Lepidostromataceae Basidiomycota Lichen-forming fungi Mexico Trans-Mexican Volcanic Belt Phylogenetic constraint 



Rytas Vilgalys is thanked for collecting the new species and providing the facilities for its investigation using molecular techniques. We gratefully acknowledge the assistance that Richard Harris and Roy Halling provided with dissection and illustration. Curators and staff of BR and LG are thanked for their help with specimen loans. This research was funded in part by a Diversa Award to BPH from the Explorer’s Club Exploration Fund ["Lichen-Associated Bacterial Diversity in the Trans-Mexican Volcanic Belt"]. Funding for field collecting by MES was provided by the Harvard University Herbaria. We would like to thank John Pormann and Tom Milledge for their service and assistance with the Duke Shared Cluster Resource. Many thanks are due to Arturo Estrada-Torres and Greg Bonito for coordinating the collecting expedition in Mexico, funding for which was provided in part by National Science Foundation award DEB-0641297 ["REVSYS: Phylogenetic and Revisionary Systematics of North American Truffles (Tuber, Ascomycota)"].


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Büdel B, Schultz M (2003) A way to cope with high irradiance and drought: inverted morphology of a new cyanobacterial lichen, Peltula inversa sp. nova, from the Nama Karoo, Namibia. Bibl Lichenol 86:225–232Google Scholar
  3. Ertz D, Lawrey JD, Sikaroodi M, Gillevet PM, Fischer E, Killmann D, Sérusiaux E (2008) A new lineage of lichenized basidiomycetes inferred from a two-gene phylogeny: The Lepidostromataceae with three species from the tropics. Am J Bot 95:1548–1556PubMedCrossRefGoogle Scholar
  4. Fischer E, Ertz D, Killman D, Sérusiaux E (2007) New Multiclavula species from Rwanda. Bot J Linn Soc 155:457–465CrossRefGoogle Scholar
  5. Glenn T, Schable N (2005) Isolating microsatelline DNA loci. 202–222. In: Zimmer EA, Roalson EH (eds) Molecular evolution: Producing the biochemical data, part B. Academic Press, San Diego, CAGoogle Scholar
  6. Hodkinson BP, Lendemer JC, Esslinger TL (2010) Parmelia barrenoae, a macrolichen new to North America and Africa. North American Fungi 5(3):1–5Google Scholar
  7. Hodkinson BP, Uehling JK, Smith ME (2011) Data from: Lepidostroma vilgalysii, a new basidiolichen from the New World. Dryad Digital Repository. doi: 10.5061/dryad.j1g5dh23
  8. Honegger R (1996) Mycobionts. In: Nash TH III (ed) The biology of lichens. Cambridge University Press, Cambridge, pp 25–36Google Scholar
  9. Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  10. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis, version 2.74.
  11. Mägdefrau K, Winkler S (1967) Lepidostroma terricolens n. g. n. sp., eine Basidiolichene der Sierra Nevada de Santa Marta (Kolumbien). Mitt Inst Colombo Aleman Invest Cient 1:11Google Scholar
  12. Oberwinkler F (1970) Die Gattungen der Basidiolichenen. Berichte der Deutschen Botanischen Gesellschaft 4:139–169Google Scholar
  13. Oberwinkler F (1984) Fungus-alga interactions in basidiolichens. Beih Nova Hedwigia 79:739–773Google Scholar
  14. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75:7537–7541CrossRefGoogle Scholar
  15. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  16. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490PubMedCrossRefGoogle Scholar
  17. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedGoogle Scholar
  18. Vogel S (1955) ‘Niedere Fensterpflanzen’ in der südafrikanischen Wüste. Eine ökologische Schilderung. Beiträge zur Biologie der Pflanzen 31:45–135Google Scholar

Copyright information

© German Mycological Society and Springer 2011

Authors and Affiliations

  • Brendan P. Hodkinson
    • 1
  • Jessie K. Uehling
    • 2
  • Matthew E. Smith
    • 3
    • 4
  1. 1.International Plant Science CenterNew York Botanical GardenBronxUSA
  2. 2.Department of Biological SciencesHumboldt State UniversityArcataUSA
  3. 3.Department of BiologyDuke UniversityDurhamUSA
  4. 4.Plant Pathology DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations