Mycological Progress

, Volume 11, Issue 3, pp 799–815 | Cite as

Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata

  • Daniel P. Lawrence
  • Myung Soo Park
  • Barry M. PryorEmail author
Original Article


Previous phylogenetic analyses revealed that species within the genera Nimbya and Embellisia reside within a large monophyletic clade that also includes the genera Alternaria, Ulocladium, Undifilum, Sinomyces, and Crivellia with Stemphylium as the sister taxon. This study expands upon previous work by including many contemporary species of each genus and utilizes molecular and morphological characters to further examine relationships. Maximum parsimony and Bayesian analysis reveals that Nimbya is not a monophyletic genus but is split into two phylogenetically distant clades, which have different and distinct conidial morphologies. One of these clades resides completely within Alternaria. Phylogenetic analyses also reveals that Embellisia does not form a monophyletic genus but is split into four monophyletic lineages. Moreover, several species of Embellisia cluster individually with clades that are predominantly Alternaria, Ulocladium, or Stemphylium, yet these Embellisia spp. possess morphological characters that are diagnostically Embellisia. Thus, these data reveal that both Nimbya and Embellisia are polyphyletic as currently defined and taxonomic restructuring is necessary in order to resolve conflict between historical morphological and contemporary molecular-based phylogenies.


Nimbya Embellisia Alternaria Phylogenetics 



This work was supported in part by the University of Arizona College of Agriculture and Life Sciences, Tucson, and the National Science Foundation (DEB No. 0918758).


  1. Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91:964–977CrossRefGoogle Scholar
  2. Chen WQ, Lin XF, Zhang TY (1997) A new species of Nimbya. Mycosystema 2:106–108Google Scholar
  3. Crivelli PG (1983) U¨ ber die heterogene Ascomycetengattung Pleospora Rabh.: Vorshlag fu¨r eine Aufteilung.— Diss. ETH. Nr. 7318. Zu¨rich: ADAG Administration & Druck AG. 213 pGoogle Scholar
  4. David JC, Coles K, Fisher J, Moss ST (2000) A new species of Embellisia from soil with high levels of heavy metals. Mycoscience 41:533–537CrossRefGoogle Scholar
  5. de Hoog GS, Muller PJ (1973) A new species of Embellisia associated with skin disease of hyacinths. Neth J Plant Path 79:85–93CrossRefGoogle Scholar
  6. de Hoog GS, Seigle-Murandi F, Steinman R, Eriksson KE (1985) A new species of Embellisia from the North Sea. J Microbio 51:409–413Google Scholar
  7. Eriksson OE, Hawksworth DL (1991) Notes on ascomycete systematics. Systema Ascomycetum 12:1–38Google Scholar
  8. Fuckel L (1863) Fungi rhenani exsiccate, Fasc. I, No. 1–100.Google Scholar
  9. Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49(4):652–670PubMedCrossRefGoogle Scholar
  10. Hasegawa M, Kishino H (1989) Confidence limits on the maximum-likelihood estimate of the hominoid tree from mitochondrial-DNA sequences. Evolution 43:672–677CrossRefGoogle Scholar
  11. Hoes JA, Bruehl GW, Shaw CG (1965) A new Pseudostemphylium. Mycologia 57:904–912CrossRefGoogle Scholar
  12. Holcomb GE, Antonopoulos AA (1976) Alternaria alternantherae: A new species found on alligatorweed. Mycologia 68:1125–1129Google Scholar
  13. Hong SG, Cramer RA, Lawrence CB, Pryor BM (2005) Alt a1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genet Biol 42:119–129PubMedCrossRefGoogle Scholar
  14. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  15. Johnson DA, Simmons EG, Miller JS, Stewart EL (2002) Taxonomy and pathology of Macrospora/Nimbya on some North American bulrushes (Scirpus spp.). Mycotaxon 84:413–428Google Scholar
  16. Maddison DR, Maddison WP (2003) MacClade 4.06: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MAGoogle Scholar
  17. Muntanola-Cvetkovic M, Ristanovic B (1976) A new species of Embellisia isolated from seawater. Mycologia 68:47–51CrossRefGoogle Scholar
  18. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818PubMedCrossRefGoogle Scholar
  19. Pryor BM, Bigelow DM (2003) Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 95:1141–1154PubMedCrossRefGoogle Scholar
  20. Pryor BM, Gilbertson RL (2000) Molecular phylogenetic relationships amongst Alternaria species and related fungi based on analysis of nuclear ITS and mt SSU rDNA sequences. Mycol Res 104:1312–1321CrossRefGoogle Scholar
  21. Pryor BM, Michailides TJ (2002) Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology 92:406–416PubMedCrossRefGoogle Scholar
  22. Pryor BM, Creamer R, Shoemaker RA, McLain-Romero J, Hambleton S (2009) Undifilum, a new genus of endophytic Embellisia oxytropis and Helminthosporium bornmuelleri on legumes. Bot 87:178–194CrossRefGoogle Scholar
  23. Rokas A, Williams BL, King N, Carroll BS (2003) Genome-scale approaches to resolving incongruency in molecular phylogenies. Nature 425:798–804PubMedCrossRefGoogle Scholar
  24. Runa F, Park MS, Pryor BM (2009) Ulocladium systematics revisited: phylogeny and taxonomic status. Mycol Prog 8:35–47CrossRefGoogle Scholar
  25. Saccardo PA (1886) Sylloge Fungorum. Vol. IV. Padova: Publ by the author. p 807Google Scholar
  26. Simmons EG (1967) Typification of Alternaria, Stemphylium, and Ulocladium. Mycologia 59:67–92PubMedCrossRefGoogle Scholar
  27. Simmons EG (1971) Helminthosporium allii as type of a new genus. Mycologia 63:380–386CrossRefGoogle Scholar
  28. Simmons EG (1983) An aggregation of Embellisia species. Mycotaxon 17:216–241Google Scholar
  29. Simmons EG (1986) Alternaria themes and variations (22–26). Mycotaxon 25:287–308Google Scholar
  30. Simmons EG (1989) Macrospora Fuckel (Pleosporales) and related anamorphs. Sydowia 41:314–329Google Scholar
  31. Simmons EG (1990) Embellisia and related teleomorphs. Mycotaxon 38:251–265Google Scholar
  32. Simmons EG (1992) Alternaria taxonomy: current status, viewpoint, challenge. In: Chelkowski J, Visconti A (eds) Alternaria biology, plant diseases and metabolites. Elsevier Science Publishers, Amsterdam, pp 1–35Google Scholar
  33. Simmons EG (1995) Alternaria themes and variations (112–144). Mycotaxon 55:55–163Google Scholar
  34. Simmons EG (1997) Alternaria themes and variations (151–223). Mycotaxon 65:1–91Google Scholar
  35. Simmons EG (2000) Alternaria themes and variations (244–286): species on Solanaceae. Mycotaxon 75:1–115Google Scholar
  36. Simmons EG (2004) Novel dematiaceous hyphomycetes. Stud Mycol 50:109–118Google Scholar
  37. Simmons EG (2007) Alternaria an identification manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands, pp 10–12Google Scholar
  38. Sivanesan A (1984) The Bitunicate Ascomycetes. J. Kramer, Vaduz, p 701Google Scholar
  39. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  40. Tóth B, Csõsz M, Szabó-Hevér A, Simmons EG, Samson RA, Varga J (2011) Alternaria hungarica sp. Nov., a minor foliar pathogen of wheat in Hungary. Mycologia 103:94–100PubMedCrossRefGoogle Scholar
  41. Wang Y, Pei Y, O’Neill NR, Zhang X (2010) Ulocladium cantlous sp. nov. isolated from northwestern China: its morphology and molecular phylogenetic position. Mycologia 102:374–383PubMedCrossRefGoogle Scholar
  42. Wang Y, Geng Y, Ma J, Wang Q, Zhang X (2011) Sinomyces: a new genus of anamorphic Pleosporacea. Fungal Biology 115:188–195PubMedCrossRefGoogle Scholar
  43. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. London: Academic Press, London, pp 315–322Google Scholar
  44. Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102PubMedCrossRefGoogle Scholar
  45. Zhao GZ, Zhang TY (2005) Notes on dictyosporous hyphomycetes from China VII. The genus Nimbya Fungal Diversity 19:201–215Google Scholar
  46. van Zinderen Bakker EM (1940) Cercospora scirpicola (Sacc.) nov. comb. Revue de Mycol 5:64–69Google Scholar

Copyright information

© German Mycological Society and Springer 2011

Authors and Affiliations

  • Daniel P. Lawrence
    • 1
  • Myung Soo Park
    • 1
    • 2
  • Barry M. Pryor
    • 1
    Email author
  1. 1.Division of Plant Pathology and Microbiology, Department of Plant Sciences, College of AgricultureUniversity of ArizonaTucsonUSA
  2. 2.Chemical Biotechnology Research Center, Korea Research Institute of Chemical TechnologyYusongKorea

Personalised recommendations