Mycological Progress

, Volume 11, Issue 1, pp 215–254 | Cite as

Trichoderma stromaticum and its overseas relatives

  • Gary J. SamuelsEmail author
  • Adnan Ismaiel
  • Jorge de Souza
  • Priscila Chaverri
Original Article


Trichoderma stromaticum, T. rossicum and newly discovered species form a unique lineage in Trichoderma. Phylogenetic and phenotypic diversity in Trichoderma stromaticum are examined in the light of reported differences in ecological parameters and AFLP patterns. Multilocus phylogenetic analysis using 4 genes (tef1, rbp2, cal, chi18-5) did not reveal phylogenetic basis for the two reported divergent AFLP patterns or for ecological parameters; however, this analysis does indicate incomplete speciation with one supported clade derived from within T. stromaticum that corresponds to AFLP Group 2 of de Souza et al. (2006, Phytopathology 96:61–67). Trichoderma stromaticum is known only from tropical America and is typically found in association with Theobroma cacao infected with Moniliophthora perniciosa. It is reported here for the first time on pseudostromata of M. roreri in Peru. Strains of T. stromaticum also have been isolated as endophytes from stems of Theo. cacao. There are no recognized close relatives of T. stromaticum in tropical America. The closest relatives of T. stromaticum are collected in Africa and Thailand; somewhat more distantly related are T. rossicum and T. barbatum, both found in north temperate regions.


Hypocreales Theobroma cacao Pleomorphic fungi Species concepts Species complex Hypocrea Hypocreaceae Cacao Biological control Biogeography Systematics 

Taxonomic novelties

Trichoderma barbatum T. caesareum T. floccosum T. ivoriense T. lanuginosum T. vermipilum 



The following individuals contributed cultures used in this research: Adriaana Jacobs and Michael Wingfield (Republic of South Africa); Ismaiel Kibbe (Côte d’Ivoire), John Bissett (Canada), Christian Kubicek and Irina Druzhinina (Austria), Carmen Suarez (Ecuador), Whillys Soberanis and Enrique Arevalo-Giardini (Peru), Alan Pomella (Brazil); Harry Evans, Keith Holmes and Sarah Thomas (UK); Rabio Olatinwo, Annemieke Schilder and Prakash Hebbar (USA). Didier Begoude (Cameroon) enabled collecting in the Reserve Faunal du Dja. Nigel Hywell-Jones and Rungtip Nasit facilitated collecting in the UNESCO World Heritage Site Khao Yai National Park (Thailand). Orlando Petrini corrected the Latin descriptions. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.


  1. Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of the Marasmiaceae. Mycologia 97:1012–1022PubMedCrossRefGoogle Scholar
  2. Althoff D, Gitzendanner M, Segraves K (2007) The utility of amplified fragment length polymorphisms in phylogenetics: A comparison of homology within and between genomes. Syst Biol 56:477–484PubMedCrossRefGoogle Scholar
  3. de Arruda MCC, Sepulveda Ch GF, Miller RNG, Ferreira MASV, Santiago DVR, Resende MLV, Dianese JC, Felipe MSS (2005) Crinipellis brasiliensis, a new species based on morphological and molecular data. Mycologia 97:1348–1361PubMedCrossRefGoogle Scholar
  4. Bartley BGD (2005) The genetic diversity of cacao and its utilization. CABI Publishing, Wallingford, UKCrossRefGoogle Scholar
  5. Bastos CN (1996) Potencial de Trichoderma viride no controle da vassoura-de-bruxa (Crinipellis perniciosa) do cacaueiro. Fitopatol Bras 21:509–512Google Scholar
  6. Bezerra JL, Costa JC, Bastos CN, Faleiro FG (2003) Hypocrea stromatica sp. nov. teleomorfo de Trichoderma stromaticum. Fitopatol Bras 28:408–412CrossRefGoogle Scholar
  7. Bissett J (1991) A revision of the genus Trichoderma III Section Pachybasium. Can J Bot 69:2373–2417CrossRefGoogle Scholar
  8. Bissett J, Szakacs G, Nolan CA, Druzhinina I, Gradinger C, Kubicek CP (2003) New species of Trichoderma from Asia. Can J Bot 81:570–586CrossRefGoogle Scholar
  9. Bussell JD, Waycott M, Chappill JA (2005) Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol Evol Syst 7:3–26CrossRefGoogle Scholar
  10. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  11. Chaverri P, Castlebury LA, Overton BE, Samuels GJ (2003) Hypocrea/Trichoderma species with conidiophore elongations and green conidia. Mycologia 95:1100–1140PubMedCrossRefGoogle Scholar
  12. Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14:733–740PubMedGoogle Scholar
  13. Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol Biol Evol 14:432–437CrossRefGoogle Scholar
  14. Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7:177–209CrossRefGoogle Scholar
  15. Dettman J, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to the phylogenetic species recognition in the model Eukaryote Neurospora. Evolution 57:2703–2720PubMedGoogle Scholar
  16. de Queiroz A (1993) For consensus (sometimes). Syst Biol 42:368–372Google Scholar
  17. De Respinis S, Voel G, Benagli C, Tonolla M, Petrini O, Samuels GJ (2010) MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol Prog 9:79–100CrossRefGoogle Scholar
  18. de Souza JT, Pomella AWV, Bowers JH, Pirovani CP, Loguercio LL, Hebbar PK (2006) Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen. Phytopathology 96:61–67PubMedCrossRefGoogle Scholar
  19. de Souza JT, Bailey BA, Pomella AWV, Erbe EF, Murphy CA, Bae H, Hebbar PK (2008) Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biol Control 46:36–45CrossRefGoogle Scholar
  20. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucl Acids Res 19:4008PubMedCrossRefGoogle Scholar
  21. Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw TB, Bissett J (2010) The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 10:94PubMedCrossRefGoogle Scholar
  22. Evans HC, Holmes KA, Reid AP (2003a) Phylogeny of the frosty pod rot pathogen of cocoa. Plant Pathol 52:476–485CrossRefGoogle Scholar
  23. Evans HC, Holmes KA, Thomas SE (2003b) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160CrossRefGoogle Scholar
  24. Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  25. Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110:1464–1474PubMedCrossRefGoogle Scholar
  26. Hebbar P, Sanogo S, Pomella A, Soberanis W, Gomez I, Costa JC (2002) Biocontrol of cacao fungal diseases - example of disease management in a tropical tree crop. Bull OILB/SROP 25:359–361Google Scholar
  27. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  28. Hjorth S, Pomella AWV, Hockenhull J, Hebbar PK (2003) Biological control of Witches' Broom Disease, (Crinipellis perniciosa), with co-evolved fungus, Trichoderma stromaticum: testing different delivery regimes. Proceedings of the XIV International Cocoa Research Conference, Accra, Ghana, vol 2, pp 691–697Google Scholar
  29. Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631PubMedCrossRefGoogle Scholar
  30. Huelsenbeck JP, Ronquist F (2001) Mr Bayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  31. Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73PubMedCrossRefGoogle Scholar
  32. Kindermann J, El-Ayouti SGJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet Biol 60:1–12Google Scholar
  33. Klein D, Eveleigh DE (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium Vol. 1 Basic biology, taxonomy and genetics. Taylor and Francis, LondonGoogle Scholar
  34. Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Syst Biol 56:400–411PubMedCrossRefGoogle Scholar
  35. Komon-Zelazowska M, Bissett J, Zafari D, Hatvani L, Mancizinger L, Woo W, Lorito M, Kredicks L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73:7415–7426PubMedCrossRefGoogle Scholar
  36. Kornerup A, Wanscher JH (1978) Methuen Handbook of Colour, 3rd edn. Methuen, LondonGoogle Scholar
  37. Kullnig C, Szakacs G, Kubicek CP (2000) Molecular identification of Trichoderma species from Russia, Siberia and Himalaya. Mycol Res 104:1117–1125CrossRefGoogle Scholar
  38. Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767CrossRefGoogle Scholar
  39. Leache AD, Reeder TW (2002) Molecular systematics of the eastern Fence Lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol 51:44–68PubMedCrossRefGoogle Scholar
  40. Loguercio LL, de Carvalho AC, Niella GR, de Souza JT, Pomella AWV (2009a) Selection of Trichoderma stromaticum isolates for efficient biological control of witches' broom disease in cacao. Biol Control 51:130–139CrossRefGoogle Scholar
  41. Loguercio LL, Santos JS, Niella GR, Miranda RAC, de Souza JT, Collins RT, Pomella AWV (2009b) Canopy-microclimate effects on the antagonism between Trichoderma stromaticum and Moniliophthora perniciosa in shaded cacao. Plant Pathol 58:1104–1115CrossRefGoogle Scholar
  42. Maddison DR, Maddison WM (2003) MacClade 4 Analysis of phylogeny and character evolution (version 4.06). Sinauer, Sunderland, MAGoogle Scholar
  43. Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45:524–545CrossRefGoogle Scholar
  44. Medeiros FHV, Pomella AWV, de Souza JT, Niella GR, Valle R, Bateman RP, Fravel D, Vinyard B, Hebbar PK (2010) A novel, integrated method for management of witches’ broom disease in cacao in Bahia, Brazil. Crop Prot 29:704–711CrossRefGoogle Scholar
  45. Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, Pereira GAG (2008) Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe. Mol Plant Pathol 9:577–588PubMedCrossRefGoogle Scholar
  46. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117PubMedCrossRefGoogle Scholar
  47. Motomayor JC, Lachenaud P, da Silva W, Mota J, Loor R, Kuhn D, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE 3(10):e3311. doi: 10.1371/journal.pone.0003311 CrossRefGoogle Scholar
  48. Nirenberg HI (1976) Studies on the morphologic and biologic differentiation in Fusarium Section Liseola. Mitt Biol Bundesanst Land Forstwirtsch 169:1–117Google Scholar
  49. O’Donnell K, Cigelnik E, Ninernburg HI, Aoki T (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogeographically distinct species. Mycoscience 41:61–78CrossRefGoogle Scholar
  50. Olatinwo RO, Sabaratnam S, Schilder AMC (2004) Trichoderma stromaticum: A potential biological control agent for black root rot of Strawberries. Abstract. Phytopathology 94(6):s78Google Scholar
  51. O'Meara BC (2010) New heuristic methods for joint species delimitation and species tree inference. Syst Biol 59:59–73PubMedCrossRefGoogle Scholar
  52. Overton BE, Stewart EL, Geiser DM (2006a) Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Stud Mycol 56:39–65PubMedCrossRefGoogle Scholar
  53. Overton BE, Stewart EL, Geiser DM, Jaklitsch WM (2006b) Systematics of Hypocrea citrina and related taxa. Stud Mycol 56:1–38PubMedCrossRefGoogle Scholar
  54. Pegler DN (1977) A preliminary agaric flora of East Africa. Kew Bull Add Ser VI:1–615Google Scholar
  55. Posada O (2008) jMODELTEST: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  56. Purdy LH, Schmidt RA (1996) Status of Cacao witches’ broom: biology, epidemiology, and management. Annu Rev Phytopathol 34:573–594PubMedCrossRefGoogle Scholar
  57. Rambaut A, Drumond AJ (2009) Tracer version 1.5, MCMC Trace analysis package available at
  58. Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060PubMedCrossRefGoogle Scholar
  59. Rincones J, Mazotti GD, Griffith GW, Pomela AW, Figueira A, Queiroz MV, Pereira JF, Azevedo RA, Pereira GAG, Meinhardt LW (2006) Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycol Res 110:821–832PubMedCrossRefGoogle Scholar
  60. Samuels GJ, Ismaiel A (2009) Trichoderma evansii and T lieckfeldtiae: two new T hamatum-like species. Mycologia 101:142–156PubMedCrossRefGoogle Scholar
  61. Samuels GJ, Pardo-Schultheiss R, Hebbar KP, Lumsden RD, Bastos CN, Bezerra JL, Costa JC (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches’ broom pathogen. Mycol Res 104:760–764CrossRefGoogle Scholar
  62. Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170PubMedCrossRefGoogle Scholar
  63. Samuels GJ, Ismaiel A, Bon M-C, De Respinis S, Petrini O (2009) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966CrossRefGoogle Scholar
  64. Sanogo S, Pomella A, Hebbar PK, Bailey B, Costa JCB, Samuels GJ, Lumsden RD (2002) Production and germination of conidia of Trichoderma stromaticum, a mycoparasite of Crinipellis perniciosa on cacao. Phytopathology 92:103–1037CrossRefGoogle Scholar
  65. Singer R (1976) Marasmieae (Basidiomycetes − Tricholomataceae). Flora Neotrop Monogr 17:1–347Google Scholar
  66. Sundberg WJ, Kost D (1989) Notes on Hypocrea latizonata. Mem NY Bot Gard 49:286–289Google Scholar
  67. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.06b10. Sinauer, Sunderland, MAGoogle Scholar
  68. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface; flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882CrossRefGoogle Scholar
  69. Volkmann-Kohlmdyer B, Kohlmeyer J (1996) How to prepare truly permanent microscope slides. Mycologist 10:107–108Google Scholar
  70. Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska DIS, Kubicek CP, Berg G (2009) Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J 3:79–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Gary J. Samuels
    • 1
    Email author
  • Adnan Ismaiel
    • 1
  • Jorge de Souza
    • 2
  • Priscila Chaverri
    • 3
  1. 1.Systematic Mycology and Microbiology LabUnited States Department of Agriculture, Agriculture Research ServiceBeltsvilleUSA
  2. 2.Centro de Ciências Agrárias Biológicas e Ambientais (CCABA)Universidade Federal do Recôncavo da Bahia (UFRB)Centro, Cruz das AlmasBrazil
  3. 3.Department of Plant Sciences and Landscape ArchitectureUniversity of MarylandCollege ParkUSA

Personalised recommendations