Skip to main content
Log in

Trichoderma stromaticum and its overseas relatives

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Trichoderma stromaticum, T. rossicum and newly discovered species form a unique lineage in Trichoderma. Phylogenetic and phenotypic diversity in Trichoderma stromaticum are examined in the light of reported differences in ecological parameters and AFLP patterns. Multilocus phylogenetic analysis using 4 genes (tef1, rbp2, cal, chi18-5) did not reveal phylogenetic basis for the two reported divergent AFLP patterns or for ecological parameters; however, this analysis does indicate incomplete speciation with one supported clade derived from within T. stromaticum that corresponds to AFLP Group 2 of de Souza et al. (2006, Phytopathology 96:61–67). Trichoderma stromaticum is known only from tropical America and is typically found in association with Theobroma cacao infected with Moniliophthora perniciosa. It is reported here for the first time on pseudostromata of M. roreri in Peru. Strains of T. stromaticum also have been isolated as endophytes from stems of Theo. cacao. There are no recognized close relatives of T. stromaticum in tropical America. The closest relatives of T. stromaticum are collected in Africa and Thailand; somewhat more distantly related are T. rossicum and T. barbatum, both found in north temperate regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of the Marasmiaceae. Mycologia 97:1012–1022

    Article  PubMed  CAS  Google Scholar 

  • Althoff D, Gitzendanner M, Segraves K (2007) The utility of amplified fragment length polymorphisms in phylogenetics: A comparison of homology within and between genomes. Syst Biol 56:477–484

    Article  PubMed  CAS  Google Scholar 

  • de Arruda MCC, Sepulveda Ch GF, Miller RNG, Ferreira MASV, Santiago DVR, Resende MLV, Dianese JC, Felipe MSS (2005) Crinipellis brasiliensis, a new species based on morphological and molecular data. Mycologia 97:1348–1361

    Article  PubMed  Google Scholar 

  • Bartley BGD (2005) The genetic diversity of cacao and its utilization. CABI Publishing, Wallingford, UK

    Book  Google Scholar 

  • Bastos CN (1996) Potencial de Trichoderma viride no controle da vassoura-de-bruxa (Crinipellis perniciosa) do cacaueiro. Fitopatol Bras 21:509–512

    Google Scholar 

  • Bezerra JL, Costa JC, Bastos CN, Faleiro FG (2003) Hypocrea stromatica sp. nov. teleomorfo de Trichoderma stromaticum. Fitopatol Bras 28:408–412

    Article  Google Scholar 

  • Bissett J (1991) A revision of the genus Trichoderma III Section Pachybasium. Can J Bot 69:2373–2417

    Article  Google Scholar 

  • Bissett J, Szakacs G, Nolan CA, Druzhinina I, Gradinger C, Kubicek CP (2003) New species of Trichoderma from Asia. Can J Bot 81:570–586

    Article  Google Scholar 

  • Bussell JD, Waycott M, Chappill JA (2005) Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol Evol Syst 7:3–26

    Article  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Chaverri P, Castlebury LA, Overton BE, Samuels GJ (2003) Hypocrea/Trichoderma species with conidiophore elongations and green conidia. Mycologia 95:1100–1140

    Article  PubMed  Google Scholar 

  • Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14:733–740

    PubMed  CAS  Google Scholar 

  • Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol Biol Evol 14:432–437

    Article  Google Scholar 

  • Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7:177–209

    Article  Google Scholar 

  • Dettman J, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to the phylogenetic species recognition in the model Eukaryote Neurospora. Evolution 57:2703–2720

    PubMed  Google Scholar 

  • de Queiroz A (1993) For consensus (sometimes). Syst Biol 42:368–372

    Google Scholar 

  • De Respinis S, Voel G, Benagli C, Tonolla M, Petrini O, Samuels GJ (2010) MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol Prog 9:79–100

    Article  Google Scholar 

  • de Souza JT, Pomella AWV, Bowers JH, Pirovani CP, Loguercio LL, Hebbar PK (2006) Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen. Phytopathology 96:61–67

    Article  PubMed  Google Scholar 

  • de Souza JT, Bailey BA, Pomella AWV, Erbe EF, Murphy CA, Bae H, Hebbar PK (2008) Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biol Control 46:36–45

    Article  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucl Acids Res 19:4008

    Article  PubMed  CAS  Google Scholar 

  • Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw TB, Bissett J (2010) The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 10:94

    Article  PubMed  Google Scholar 

  • Evans HC, Holmes KA, Reid AP (2003a) Phylogeny of the frosty pod rot pathogen of cocoa. Plant Pathol 52:476–485

    Article  CAS  Google Scholar 

  • Evans HC, Holmes KA, Thomas SE (2003b) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160

    Article  Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110:1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Hebbar P, Sanogo S, Pomella A, Soberanis W, Gomez I, Costa JC (2002) Biocontrol of cacao fungal diseases - example of disease management in a tropical tree crop. Bull OILB/SROP 25:359–361

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Hjorth S, Pomella AWV, Hockenhull J, Hebbar PK (2003) Biological control of Witches' Broom Disease, (Crinipellis perniciosa), with co-evolved fungus, Trichoderma stromaticum: testing different delivery regimes. Proceedings of the XIV International Cocoa Research Conference, Accra, Ghana, vol 2, pp 691–697

  • Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) Mr Bayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73

    Article  PubMed  CAS  Google Scholar 

  • Kindermann J, El-Ayouti SGJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet Biol 60:1–12

    Google Scholar 

  • Klein D, Eveleigh DE (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium Vol. 1 Basic biology, taxonomy and genetics. Taylor and Francis, London

    Google Scholar 

  • Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Syst Biol 56:400–411

    Article  PubMed  Google Scholar 

  • Komon-Zelazowska M, Bissett J, Zafari D, Hatvani L, Mancizinger L, Woo W, Lorito M, Kredicks L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73:7415–7426

    Article  PubMed  CAS  Google Scholar 

  • Kornerup A, Wanscher JH (1978) Methuen Handbook of Colour, 3rd edn. Methuen, London

    Google Scholar 

  • Kullnig C, Szakacs G, Kubicek CP (2000) Molecular identification of Trichoderma species from Russia, Siberia and Himalaya. Mycol Res 104:1117–1125

    Article  CAS  Google Scholar 

  • Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767

    Article  CAS  Google Scholar 

  • Leache AD, Reeder TW (2002) Molecular systematics of the eastern Fence Lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol 51:44–68

    Article  PubMed  Google Scholar 

  • Loguercio LL, de Carvalho AC, Niella GR, de Souza JT, Pomella AWV (2009a) Selection of Trichoderma stromaticum isolates for efficient biological control of witches' broom disease in cacao. Biol Control 51:130–139

    Article  Google Scholar 

  • Loguercio LL, Santos JS, Niella GR, Miranda RAC, de Souza JT, Collins RT, Pomella AWV (2009b) Canopy-microclimate effects on the antagonism between Trichoderma stromaticum and Moniliophthora perniciosa in shaded cacao. Plant Pathol 58:1104–1115

    Article  Google Scholar 

  • Maddison DR, Maddison WM (2003) MacClade 4 Analysis of phylogeny and character evolution (version 4.06). Sinauer, Sunderland, MA

    Google Scholar 

  • Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45:524–545

    Article  Google Scholar 

  • Medeiros FHV, Pomella AWV, de Souza JT, Niella GR, Valle R, Bateman RP, Fravel D, Vinyard B, Hebbar PK (2010) A novel, integrated method for management of witches’ broom disease in cacao in Bahia, Brazil. Crop Prot 29:704–711

    Article  CAS  Google Scholar 

  • Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, Pereira GAG (2008) Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe. Mol Plant Pathol 9:577–588

    Article  PubMed  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Motomayor JC, Lachenaud P, da Silva W, Mota J, Loor R, Kuhn D, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE 3(10):e3311. doi:10.1371/journal.pone.0003311

    Article  Google Scholar 

  • Nirenberg HI (1976) Studies on the morphologic and biologic differentiation in Fusarium Section Liseola. Mitt Biol Bundesanst Land Forstwirtsch 169:1–117

    Google Scholar 

  • O’Donnell K, Cigelnik E, Ninernburg HI, Aoki T (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogeographically distinct species. Mycoscience 41:61–78

    Article  Google Scholar 

  • Olatinwo RO, Sabaratnam S, Schilder AMC (2004) Trichoderma stromaticum: A potential biological control agent for black root rot of Strawberries. Abstract. Phytopathology 94(6):s78

    Google Scholar 

  • O'Meara BC (2010) New heuristic methods for joint species delimitation and species tree inference. Syst Biol 59:59–73

    Article  PubMed  Google Scholar 

  • Overton BE, Stewart EL, Geiser DM (2006a) Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Stud Mycol 56:39–65

    Article  PubMed  Google Scholar 

  • Overton BE, Stewart EL, Geiser DM, Jaklitsch WM (2006b) Systematics of Hypocrea citrina and related taxa. Stud Mycol 56:1–38

    Article  PubMed  Google Scholar 

  • Pegler DN (1977) A preliminary agaric flora of East Africa. Kew Bull Add Ser VI:1–615

    Google Scholar 

  • Posada O (2008) jMODELTEST: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Purdy LH, Schmidt RA (1996) Status of Cacao witches’ broom: biology, epidemiology, and management. Annu Rev Phytopathol 34:573–594

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Drumond AJ (2009) Tracer version 1.5, MCMC Trace analysis package available at http://tree.bio.ed.ac.uk/software/tracer/

  • Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    Article  PubMed  CAS  Google Scholar 

  • Rincones J, Mazotti GD, Griffith GW, Pomela AW, Figueira A, Queiroz MV, Pereira JF, Azevedo RA, Pereira GAG, Meinhardt LW (2006) Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycol Res 110:821–832

    Article  PubMed  CAS  Google Scholar 

  • Samuels GJ, Ismaiel A (2009) Trichoderma evansii and T lieckfeldtiae: two new T hamatum-like species. Mycologia 101:142–156

    Article  PubMed  CAS  Google Scholar 

  • Samuels GJ, Pardo-Schultheiss R, Hebbar KP, Lumsden RD, Bastos CN, Bezerra JL, Costa JC (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches’ broom pathogen. Mycol Res 104:760–764

    Article  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    Article  PubMed  Google Scholar 

  • Samuels GJ, Ismaiel A, Bon M-C, De Respinis S, Petrini O (2009) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966

    Article  Google Scholar 

  • Sanogo S, Pomella A, Hebbar PK, Bailey B, Costa JCB, Samuels GJ, Lumsden RD (2002) Production and germination of conidia of Trichoderma stromaticum, a mycoparasite of Crinipellis perniciosa on cacao. Phytopathology 92:103–1037

    Article  Google Scholar 

  • Singer R (1976) Marasmieae (Basidiomycetes − Tricholomataceae). Flora Neotrop Monogr 17:1–347

    Google Scholar 

  • Sundberg WJ, Kost D (1989) Notes on Hypocrea latizonata. Mem NY Bot Gard 49:286–289

    Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.06b10. Sinauer, Sunderland, MA

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface; flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Article  Google Scholar 

  • Volkmann-Kohlmdyer B, Kohlmeyer J (1996) How to prepare truly permanent microscope slides. Mycologist 10:107–108

    Google Scholar 

  • Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska DIS, Kubicek CP, Berg G (2009) Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J 3:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The following individuals contributed cultures used in this research: Adriaana Jacobs and Michael Wingfield (Republic of South Africa); Ismaiel Kibbe (Côte d’Ivoire), John Bissett (Canada), Christian Kubicek and Irina Druzhinina (Austria), Carmen Suarez (Ecuador), Whillys Soberanis and Enrique Arevalo-Giardini (Peru), Alan Pomella (Brazil); Harry Evans, Keith Holmes and Sarah Thomas (UK); Rabio Olatinwo, Annemieke Schilder and Prakash Hebbar (USA). Didier Begoude (Cameroon) enabled collecting in the Reserve Faunal du Dja. Nigel Hywell-Jones and Rungtip Nasit facilitated collecting in the UNESCO World Heritage Site Khao Yai National Park (Thailand). Orlando Petrini corrected the Latin descriptions. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Samuels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuels, G.J., Ismaiel, A., de Souza, J. et al. Trichoderma stromaticum and its overseas relatives. Mycol Progress 11, 215–254 (2012). https://doi.org/10.1007/s11557-011-0743-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-011-0743-4

Keywords

Taxonomic novelties

Navigation