Mycological Progress

, Volume 9, Issue 4, pp 509–522 | Cite as

Phylogenetic relationships in genus Geopora (Pyronemataceae, Pezizales)

  • H. TammEmail author
  • K. Põldmaa
  • B. Kullman
Original article


Species delimitation in the genus Geopora (Pyronemataceae) is complicated because of small number of differentiating characters, values of which tend to overlap among the species. Current classification relies mainly on size and shape of ascospores and fruit-bodies, position of the apothecia in the ground and length of excipular hairs. We measured ascospores in ca. 90 Geopora specimens. Sequences of internal transcribed spacer (ITS) rDNA gene were obtained to investigate phylogenetic relationships in the genus. Maximum parsimony (MP) and Bayesian analyses reveal that the well-supported clades detected often do not correspond to the species concepts based on morphological characters. Nine out of the ten lineages include specimens which were initially identified as belonging to different species. The dimensions of ascospores vary to great extent within the lineages. The size and shape of fruit-bodies, length of excipular hair and hymenium colour are mostly homogenous within each clade; however, these characters coincide to a great extent among the lineages and the latter can be assessed only from fresh fruit-bodies. Nuclear DNA content, and accordingly, ploidy level do not provide evidence for species distinction. Geopora arenicola, G. tenuis and G. sepulta were recognized as monophyletic species. Geopora foliacea and G. cervina could not be explicitly delimited and the G. cervina complex comprising three clades was introduced.


Ascomycota Molecular phylogenetics Species delimitation Ploidy level 



We thank T. Tammaru for helping with statistical analyses. This study was supported by Estonian Science Foundation (grants 4989 and 6939), Doctoral School of Ecology and Environmental Sciences, the Estonian Ministry of Education and Science (target-financing project 0180012s09) and the European Regional Development Fund (Centre of Excellence FIBIR).


  1. Ahmad S (1978) Ascomycetes of Pakistan. Part 1. Biological Society of Pakistan, Lahore. Monograph No. 7Google Scholar
  2. Bidartondo MI, Baar J, Bruns TD (2001) Low ectomycorrhizal inoculum potential anddiversity from soils in and near ancient forests of bristlecone pine (Pinus longaeva). Can J Bot 79:293–299. doi: 10.1139/cjb-79-3-293 CrossRefGoogle Scholar
  3. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806. doi: 10.1098/rspb.2004.2807 CrossRefGoogle Scholar
  4. Bois G, Piché Y, Fung MYP, Khasa DP (2005) Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15:149–158. doi: 10.1007/s00572-004-0315-4 CrossRefPubMedGoogle Scholar
  5. Burdsall HH Jr (1965) Operculate asci and puffing of ascospores in Geopora (Tuberales). Mycologia 57:485–487CrossRefGoogle Scholar
  6. Burdsall HH Jr (1968) A revision of the genus Hydnocystis (Tuberales) and of the hypogeous species of Geopora (Pezizales). Mycologia 60:496–525CrossRefGoogle Scholar
  7. Cooke MC (1876) Mycographia, seu icones fungorum, 1:45–86. Williams & Norgate, LondonGoogle Scholar
  8. Dennis RWG (1968) British ascomycetes, 2nd edn. Cramer, LondonGoogle Scholar
  9. Dissing H (2000) Pezizales. In: Hansen L, Knudsen H (eds) Nordic Macromycetes 1:55–128. Nordsvamp, CopenhagenGoogle Scholar
  10. El Karkouri K, Martin F, Mousain D (2004) Diversity of ectomycorrhizal symbionts in a disturbed Pinus halepensis plantation in the Mediterranean region. Ann For Sci 61:705–710CrossRefGoogle Scholar
  11. Fries EM (1851) Novarum Symbolarum Mycologicarum Mantissa. Acta Reg Soc Sci Upps Ser 3. 1:225–231Google Scholar
  12. Fuckel L (1866) Fungi Rhenani exsiccati. Cent. 12–17, No. 1101–1700. Hedwigia 5:14–16Google Scholar
  13. Fujimura KE, Smith JE, Horton TR, Weber NS, Spatafora JW (2005) Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA. Mycorrhiza 15:79–86CrossRefPubMedGoogle Scholar
  14. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  15. Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79:1562–1572CrossRefGoogle Scholar
  16. Hansen K, Pfister DH, Hibbett DS (1999) Phylogenetic relationships among species of Phillipsia inferred from molecular and morphological data. Mycologia 91:299–314CrossRefGoogle Scholar
  17. Hansen K, Læssøe T, Pfister DH (2002) Phylogenetic diversity in the core group of Peziza inferred from ITS sequences and morphology. Mycol Res 106:879–902CrossRefGoogle Scholar
  18. Harkness HW (1885) Fungi of the Pacific Coast. Bull Calif Acad Sci 1:159–176Google Scholar
  19. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  20. Kaldorf M, Renker C, Fladung M, Buscot F (2004) Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza 14:295–306. doi: 10.1007/s00572-003-0266-1 CrossRefPubMedGoogle Scholar
  21. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedGoogle Scholar
  22. Kers LE (1974) The Swedish Geoporae and their pyrenomycete infections. Svensk Bot Tidskr 68:344–354Google Scholar
  23. Kullman B (1998) Two sibling species of the genus Byssonectria (Pezizales). Suppression of spore development under environmental stress. Mycotaxon 69:199–207Google Scholar
  24. Kullman B (2002) Nuclear DNA content, life cycle and ploidy in two Neottiella species (Pezizales, Ascomycetes). Persoonia 18:103–115Google Scholar
  25. Kullman B, Teterin W (2006) Estimation of fungal genome size: comparison of image cytometry and photometric cytometry. Folia Cryptogam Est 42:43–56Google Scholar
  26. Læssøe T, Hansen K (2007) Truffle trouble: what happened to the Tuberales? Mycol Res 111:1075–1099CrossRefPubMedGoogle Scholar
  27. Lumbsch HT, Huhndorf SM (eds) (2007) Outline of Ascomycota-2007. Myconet 13:1–58Google Scholar
  28. Maia LC, Yano AM, Kimbrough JW (1996) Species of Ascomycota forming ectomycorrhizae. Mycotaxon 57:371–390Google Scholar
  29. Massee G (1895) British fungus flora. A classified text-book of mycology, vol 4. George Bell, LondonGoogle Scholar
  30. Mueller RC, Gehring CA (2006) Interactions between an above-ground plant parasite and below-ground ectomycorrhizal fungal communities on pinyon pine. J Ecol 94:276–284CrossRefGoogle Scholar
  31. Nannfeldt JA (1941) Sepultaria arenicola (Lév.) Massee. In: Lundell S, Nannfeldt JA (Eds) Fungi exsiccati Suecici, praesertim Upsaliensis No. 958. UppsalaGoogle Scholar
  32. Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756CrossRefGoogle Scholar
  33. Nylander JAA (2004) MRMODELTEST 2.2. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  34. Parádi I, Baar J (2006) Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. For Ecol Manag 237:366–372. doi: 10.1016/j.foreco.2006.09.059 CrossRefGoogle Scholar
  35. Perry BA, Hansen K, Pfister DH (2007) A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales). Mycol Res 111:549–571CrossRefPubMedGoogle Scholar
  36. Phillips W (1887) A manual of the British discomycetes. Kegan Paul, Trench, LondonGoogle Scholar
  37. Rambaut A (1996) Se-Al: Sequence Alignment Editor
  38. Rincón A, De Felipe MR, Fernández-Pascual M (2007) Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18:23–32CrossRefPubMedGoogle Scholar
  39. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  40. Schumacher T (1979) Notes on taxonomy, ecology, and distribution of operculate discomycetes (Pezizales) from river banks in Norway. Norw J Bot 26:53–83Google Scholar
  41. Seaver FJ (1928) The North American cup-fungi (Operculates). Seaver, New YorkGoogle Scholar
  42. Selosse MA, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426. doi: 10.1007/s00248-003-2034-3 CrossRefPubMedGoogle Scholar
  43. Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164CrossRefGoogle Scholar
  44. Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863CrossRefPubMedGoogle Scholar
  45. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods) Version 4.0b10. Sinauer, SunderlandGoogle Scholar
  46. Tedersoo L, Kõljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165CrossRefGoogle Scholar
  47. Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170:581–596CrossRefPubMedGoogle Scholar
  48. Yao YJ, Spooner BM (1996a) Notes on British species of Geopora. Mycol Res 100:72–74CrossRefGoogle Scholar
  49. Yao YJ, Spooner BM (1996b) Geopora sepulta (Pezizales) in Britain, with a key to British species of the genus. Kew Bull 51:381–383CrossRefGoogle Scholar
  50. Yao YJ, Spooner BM (2003) The occurrence of Geopora arenosa in the British Isles. Kew Bull 58:247–252CrossRefGoogle Scholar
  51. Ypsilos IK, Magan N (2005) Characterisation of optimum cultural environmental conditions for the production of high numbers of Metarhizium anisopliae blastospores with enhanced ecological fitness. Biocontrol Sci Technol 15:683–699CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer 2010

Authors and Affiliations

  1. 1.Department of Botany, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  2. 2.Natural History Museum of Tartu UniversityTartuEstonia
  3. 3.Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia

Personalised recommendations