Skip to main content

Advertisement

Log in

Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review

  • Review
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Chitin, the most abundant aminopolysaccharide in nature, is a rigid and resistant structural component that contributes to the mechanical strength of chitin-containing organisms. Chemically, it is a linear cationic heteropolysaccharide composed of N-acetyl-D-glucosamine and D-glucosamine units. The enzymatic degradation of chitin is performed by a chitinolytic system with synergistic and consecutive action. Diverse organisms (containing chitin or not) produce a great variety of chitinolytic enzymes with different specificities and catalytic properties. Their physiological roles involve nutrition, parasitism, chitin recycling, morphogenesis, and/or defense. Microorganisms, as the main environmental chitin degraders, constitute a very important natural source of chitinolytic enzymes. Nowadays, the most used method for pest and plant diseases control is the utilization of chemical agents, causative of significant environmental pollution. Social concern has generated the search for alternative control systems (i.e., biological control), which contribute to the generation of sustainable agricultural development. Interactions among the different organisms are the natural bases of biological control. Interest in chitinolytic enzymes in the field of biological control has arisen due to their possible involvement in antagonistic activity against pathogenic chitin-containing organisms. The absence of chitin in plants and vertebrate animals allows the consideration of safe and selective “target” molecules for control of chitin-containing pathogenic organisms. Fungi show appropriate characteristics as potential biological control agents of insects, fungi, and nematodes due to the production of fungal enzymes with antagonistic action. The antagonistic interactions between fungi and plant nematode parasites are among the most studied experimental models because of the high economic relevance. Fungi which target nematodes are known as nematophagous fungi. The nematode egg is the only structural element where the presence of chitin has been demonstrated. In spite of being one of the most resistant biological structures, eggs are susceptible to being attacked by egg-parasitic fungi. A combination of physical and chemical phenomena result in their complete destruction. The contribution of fungal chitinases to the in vitro rupture of the eggshell confirms their role as a pathogenic factor. Chitinases have been produced by traditional fermentation methods, which have been improved by optimizing the culture conditions for industrial processes. Although wild-type microorganisms constitute an alternative source of chitinolytic enzymes, the advances in molecular biology are allowing the genetic transformation of fungi to obtain strains with high capability as biocontrol agents. Simultaneously, a better understanding of rhizosphere interactions, additional to the discovery of new molecular biology tools, will allow the choosing of better alternatives for the biological control of nematodes in order to achieve an integrated management of the soil ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035. doi:10.1099/mic.0.26980-0

    PubMed  CAS  Google Scholar 

  • Adekunle OK, Akinsanmi OA (2005) Bioactivity of Fusarium oxysporum f. sp. glycines and Sclerotium rolfsii filtrates on egg hatching, survival and infectivity of juveniles of Meloidogyne incognita race 2. Aust J Exp Agric 45:99–102. doi:10.1071/EA02129

    Google Scholar 

  • Ǻhman J, Johansson T, Olsson M, Punt PJ, van den Hondel CAMJJ, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microb 68:3408–3415

    Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Biores Technol 74:35–47

    CAS  Google Scholar 

  • Araujo JV, Santos MA, Ferraz S (1995) Efeito ovicida de fungus nematófagos sobre ovos embrionados de Toxocara canis. Arq Bras Med Vet Zoo 47:37–42 (in Portuguese)

    Google Scholar 

  • Archer DB, Wood DA (1995) Fungal exoenzymes. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London, pp 137–162

    Google Scholar 

  • Atkins SD, Clark IM (2004) Fungal molecular diagnostics: a mini review. J Appl Genet 45(1):3–15

    PubMed  Google Scholar 

  • Atkins SD, Clark IM, Pande S, Hirsch PR, Kerry BR (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    PubMed  CAS  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bernard N (1911) Sur la fonction fungicide des bulbes d’ophrydées. Am Sci Nat Bot Paris 14:221–234. Fide Flach et al. (1992)

    Google Scholar 

  • Bidochka MJ, St Leger RJ, Stuart A, Gowanlock K (1999) Nuclear rDNA phylogeny in the fungal genus Verticillium and its relationship to insect and plant virulence, extracellular proteases and carbohydrases. Microbiology 145:955–963

    PubMed  CAS  Google Scholar 

  • Binod P, Pusztahelyi T, Nagy V, Sandhya C, Szakács G, Pósci I, Pandey A (2005) Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. Enzyme Microb Tech 36:880–887

    CAS  Google Scholar 

  • Bonants PJM, Fitters PFL, Thijs H, Den Belder E, Waalwijk C, Henfling JWDM (1995) A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology 141:775–784

    PubMed  CAS  Google Scholar 

  • Bordallo JJ, López-Llorca LV, Jansson H-B, Salinas J, Persmark L, Asensio L (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499

    Google Scholar 

  • Brand D, Roussos S, Pandey A, Zilioli PC, Pohl J, Soccol CR (2004) Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita. Appl Biochem Biotech 118:81–88

    CAS  Google Scholar 

  • Burgwyn B, Nagel B, Ryerse J, Bolla RI (2003) Heterodera glycines: eggshell ultrastructure and histochemical localization of chitinous components. Exp Parasitol 104:47–53

    PubMed  CAS  Google Scholar 

  • Chaves EJ (2004) Nemátodos en cultivos hortícolas. In: Seminario de Avances en la sustitución/eliminación del bromuro de metilo en la desinfección de suelos y sustratos. INTA-EEA Balcarce – Universidad Nacional de Mar del Plata-Facultad de Ciencias Agrarias, pp 52–58 (in Spanish)

  • Chen F, Chen S (2002) Mycofloras in cysts, females, and eggs of the soybean cyst nematode in Minnesota. Appl Soil Ecol 19:35–50

    Google Scholar 

  • Chen SY, Chen FJ (2003) Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. J Nematol 35:271–277

    CAS  PubMed  Google Scholar 

  • Chen SY, Dickson DW, Mitchell DJ (1996b) Pathogenicity of fungi to eggs of Heterodera glycines. J Nematol 28(2):148–158

    CAS  PubMed  Google Scholar 

  • Chen SY, Dickson DW, Mitchell DJ (2000) Viability of Heterodera glycines exposed to fungal filtrates. J Nematol 32(2):190–197

    CAS  PubMed  Google Scholar 

  • Chen SY, Dickson DW, Whitty EB (1996a) Fungi associated with egg masses of Meloidogyne incognita and M. javanica in a Florida tobacco field. Nematropica 26(2):153–157

    Google Scholar 

  • Chet I, Inbar J (1997) Fungi. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, Weinheim, pp 65–80

    Google Scholar 

  • Clarkson JM, Charnley AK (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4(5):197–202

    PubMed  CAS  Google Scholar 

  • Cohen E (1993) Chitin synthesis and degradation as targets for pesticide action. Arch Insect Biochem Physiol 22:245–261

    PubMed  CAS  Google Scholar 

  • Cohen E (2001) Chitin synthesis and inhibition: a revisit. Pest Manag Sci 57:946–950

    PubMed  CAS  Google Scholar 

  • Costa MJN, Campos VP, Pfenning LH, Oliveira DF (2001) Toxicidad de filtrados fúngicos a Meloidogyne incognita. Fitopatol Bras 26(4):749–755 (in Portuguese)

    Google Scholar 

  • Dackman C, Chet I, Nordbring-Hertz B (1989) Fungal parasitism of the cyst nematode Heterodera schachtii: infection and enzymatic activity. FEMS Microbiol Ecol 62:201–208

    CAS  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2005a) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biot 25:1–10

    Google Scholar 

  • Dahiya N, Tewari R, Tiwari RP, Hoondal GS (2005b) Chitinase production in solid-state fermentation by Enterobacter sp. NRG4 using statistical experimental design. Curr Microbiol 51:222–228

    PubMed  CAS  Google Scholar 

  • De Bach P (1964) Biological control of insects pests and weeds, 1st edn. Chapman and Hall, London. Fide Siddiqui and Mahmood (1996)

    Google Scholar 

  • De Jin R, Suh JW, Park RD, Kim YW, Krishnan HB, Kim KY (2005) Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology 7(1):125–132

    CAS  Google Scholar 

  • Deshpande MV (1986) Enzymatic degradation of chitin & its biological applications. J Sci Ind Res 45:273–281

    CAS  Google Scholar 

  • Dong LQ, Yang JK, Zhang KQ (2007) Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. J Appl Microbiol 103:2476–2488

    PubMed  CAS  Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288:31–45

    CAS  Google Scholar 

  • Doucet ME, de Doucet MMA (1997) Nematodes and agriculture in continental Argentina. On overview. Fund Appl Nematol 20(6):521–539

    Google Scholar 

  • Dunn MT, Sayre RM, Carrell A, Wergin WP (1982) Colonization of nematode eggs by Paecilomyces lilacinus (Thom) Samson as observed with scanning electron microscope. Scan Electron Micros 3:1351–1357

    Google Scholar 

  • Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit 1 and its application to improve fungal strain virulence. Appl Environ Microb 71:363–370

    CAS  Google Scholar 

  • Felse PA, Panda T (2000) Production of microbial chitinases - A revisit. Bioprocess Eng 23:127–134

    CAS  Google Scholar 

  • Flach J, Pilet PE, Jollès P (1992) What’s new in chitinase research? Experientia 48:701–716

    PubMed  CAS  Google Scholar 

  • Fukamizo T (2000) Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sc 1:105–124

    CAS  Google Scholar 

  • Gan Z, Yang J, Tao N, Liang L, Mi Q, Li J, Zhang KQ (2007) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317

    PubMed  CAS  Google Scholar 

  • Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5(2):54–72

    Google Scholar 

  • Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190

    CAS  Google Scholar 

  • Gooday GW, Zhu W-Y, O’Donnell RW (1992) What are the roles of chitinases in the growing fungus? FEMS Microbiol Lett 100:387–392

    CAS  Google Scholar 

  • Grim LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biot 69:375–384

    Google Scholar 

  • Gunasekera TS, Holland RJ, Gillings MR, Briscoe DA, Neethling DC, Williams KL, Nevalainen KMH (2000) Phenotypic and genetic characterization of Paecilomyces lilacinus strains with biocontrol activity against root-knot nematodes. Can J Microbiol 46:775–783

    PubMed  CAS  Google Scholar 

  • Henrissat B (1999) Classification of chitinases modules. EXS 87(1):137–156

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87(1):171–184

    PubMed  CAS  Google Scholar 

  • Hidalgo-Diaz L, Kerry BR (2008) Integration of biological control with other methods of nematode management. In: Ciancio A, Mukerji KG (eds) Integrated Management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, The Netherlands, pp 29–49

    Google Scholar 

  • Hirsch PR, Atkins SD, Mauchline TH, Morton CO, Davies KG, Kerry BR (2001) Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant Soil 232:21–30

    CAS  Google Scholar 

  • Hoell IA, Klemsdal SS, Vaaje-Kolstad G, Horn SJ, Eijsink VGH (2005) Overexpression and characterization of a novel chitinase from Trichoderma atroviridae strain P1. Biochim Biophys Acta 1748:180–190

    PubMed  CAS  Google Scholar 

  • Holland RJ, Williams KL, Khan A (1999) Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1(2):131–139

    Google Scholar 

  • Howard MB, Ekborg NA, Weiner RM, Hutcheson SW (2003) Detection and characterization of chitinases and other chitin-modifying enzymes. J Ind Microbiol Biot 30:627–635

    CAS  Google Scholar 

  • Huang X, Zhao N, Zhang K (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 155:811–816

    PubMed  CAS  Google Scholar 

  • Inglis PW, Rubia BC, Sarmento RBC, Gaviao CFC, Valadares-Inglis MC (2005) DNA fingerprinting of Paecilomyces strains of potential use for the biological control of pests. World J Microb Biot 21:1487–1492

    CAS  Google Scholar 

  • Irving F, Kerry BR (1986) Variation between strains of the nematophagous fungus, Verticillium chlamydosporium Goddard. II. Factors affecting parasitism of cyst nematode eggs. Nematologica 32:474–485

    Google Scholar 

  • Jansson H-B, Tunlid A, Nordbring-Hertz B (1997) Nematodes. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, Weinheim, pp 38–50

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    CAS  PubMed  Google Scholar 

  • Jung C, Wyss U (1999) New approaches to control plant parasitic nematodes. Appl Microbiol Biot 51:439–446

    CAS  Google Scholar 

  • Karlsson M, Stenlid J (2008) Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol Bioinf 4:47–60

    CAS  Google Scholar 

  • Kerry BR (1990) An assessment of progress toward microbial control of plant-parasitic nematodes. J Nematol 22(4S):621–631

    CAS  PubMed  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    PubMed  CAS  Google Scholar 

  • Kerry BR, Hirsch P (2005) Exploitation of rhizosphere fungi for the biological control nematodes. Press Roth 40–45

  • Khan A, Williams K, Molloy MP, Nevalainen H (2003) Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Prot Expres Purif 32:210–220

    CAS  Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352

    CAS  Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2006) Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol 51:643–658

    Google Scholar 

  • Khan HU, Ahmad R, Ahmed W, Khan SM, Khan MA (2001) Evaluation of the combined effects of Paecilomyces lilacinus and Trichoderma harzianum against root-knot disease of tomato. J Biol Sci 1(3):139–142

    Google Scholar 

  • Kok CJ, Papert A, Hok-A-Hin CH (2001) Microflora of Meloidogyne egg masses: species composition, population density and effect on the biocontrol agent Verticillium chlamydosporium (Goddard). Nematology 3(8):729–734

    Google Scholar 

  • Krieger de Moraes C, Schrank A, Henning Vainstein M (2003) Regulation of extracellular chitinases and proteases in the entomopathogen and acaricide Metarhizium anisopliae. Curr Microbiol 46:205–210

    PubMed  CAS  Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83(2):11–23

    CAS  Google Scholar 

  • Kucuk C, Kivanc M (2003) Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features. Turk J Biol 27:247–253

    CAS  Google Scholar 

  • Kühn J (1877) Vorlaufiger Bericht uber die bisherigen Ergebnisse der seit dem jahre 1875 in Aftrage des Vereins fur Ruberzucher Insdustrie aus gegiihrten versuche zue Ermittelung der ursacho der Rubenmudiqueit des Boden und Zur Er Forschung der Natur de Nematoden. Z Ver Ruben Ind Dent Reich (Ohne Band) 452–457. Fide Siddiqui and Mahmood (1996)

  • Kunert J (1992) On the mechanism of penetration of ovicidal fungi through egg-shells of parasitic nematodes. Decomposition of chitinous and ascaroside layers. Folia Parasit 39:61–66

    CAS  Google Scholar 

  • Kunert J, Zemek J, Augustín J, Kuniak E, Chalupová V (1985) Chitinolytic activity of ovicidal soil fungi. Biologia (Bratislava) 40(11):1157–1165

    CAS  Google Scholar 

  • Larsen M (2000) Prospects for controlling animal parasitic nematodes by predacious micro fungi. Parasitology 120:121–131

    Google Scholar 

  • Li D-C (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    CAS  Google Scholar 

  • Limón MC, Chacón MR, Mejías R, Delgado-Jarana J, Rincón AM, Codón AC, Benítez T (2004) Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl Microbiol Biot 64:675–685

    Google Scholar 

  • Limón MC, Margolles-Clark E, Benítez T, Penttila M (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198:57–63

    Article  PubMed  Google Scholar 

  • Liu B-L, Kao P-M, Tzeng Y-M, Feng K-C (2003) Production of chitinase from Verticillium lecanii F091 using submerged fermentation. Enzyme Microb Tech 33:410–415

    CAS  Google Scholar 

  • López-Llorca LV (1990) Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can J Microbiol 36:530–537

    Article  Google Scholar 

  • López-Llorca LV (1992) Los hongos parásitos de invertebrados y su potencial como agentes de control biológico. Rev Iberoam Micol 9:17–22 (in Spanish)

    Google Scholar 

  • López-Llorca LV, Maciá-Vicente JG, Jansson H-B (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated Management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, The Netherlands, pp 51–76

    Google Scholar 

  • López-Llorca LV, Olivares-Bernabeu C, Salinas J, Jansson H-B, Kolattukudy PE (2002) Pre-penetration events in fungal parasitism of nematode eggs. Mycol Res 106(4):499–506

    Google Scholar 

  • Lýsek H, Krajci D (1987) Penetration of ovicidal fungus Verticillium chlamydosporium through the Ascaris lumbricoides egg-shells. Folia Parasitol 34:57–60

    PubMed  Google Scholar 

  • Lýsek H, Malinský J, Janisch R (1985) Ultraestructure of eggs of Ascaris lumbricoides Linnaeus, 1758 I. Egg-shells. Folia Parasitol 32:381–384

    PubMed  Google Scholar 

  • Lýsek H, Nigenda G (1989) Capacidad de autodeshelmintizacion del suelo. Salud Pública Méx 31(6):763–771 (in Spanish)

    PubMed  Google Scholar 

  • Lýsek H, Sterba J (1991) Colonization of Ascaris lumbricoides eggs by the fungus Verticillium chlamydosporium Goddard. Folia Parasitol 38:255–259

    PubMed  Google Scholar 

  • Malsam O, Kilian M, Hain R, Berg D (1997) Fungal insecticides. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, Weinheim, pp 27–37

    Google Scholar 

  • Mansfield LS, Gamble HR, Fetterer RH (1992) Characterization of the eggshell of Haemonchus contortus. I. Structural components. Comp Biochem Physiol 103B(3):681–686

    CAS  Google Scholar 

  • Markovich NA, Kononova GL (2003) Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: areview. Appl Biochem Microb 39(4):341–351

    CAS  Google Scholar 

  • Matsumoto Y, Saucedo-Castañeda G, Revah S, Shirai K (2004) Production of β-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer. Process Biochem 39:665–671

    CAS  Google Scholar 

  • Mauchline TH, Kerry BR, Hirsch PR (2002) Quantification in soil and the rhizosphere of the nematophagous fungus Verticillim chlamydosporium by competitive PCR and comparison with selective plating. Appl Environ Microb 68:1846–1853

    CAS  Google Scholar 

  • Mc Sorley R (2003) Adaptation of nematodes to environmental extremes. Florida Entomol 86:138–142

    Google Scholar 

  • Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood. Nematologica 8:227–236

    Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    PubMed  CAS  Google Scholar 

  • Meyer SLF, Huettel RN, Liu XZ, Humber RA, Juba J, Nitao JK (2004) Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology 6(1):23–32

    Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode Meloidogyne incognita. Nematology 2(8):871–879

    Google Scholar 

  • Monfort E, López Llorca LV, Jansson H-B, Salinas J, Park JO, Sivasithamparan K (2005) Colonization of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biol Biochem 37:1229–1235

    CAS  Google Scholar 

  • Monfort E, López-Llorca LV, Jansson H-B, Salinas J (2006) In vitro soil receptivity assays to egg-parasitic nematophagous fungi. Mycol Progress 5:18–23

    Google Scholar 

  • Morgan-Jones G, Rodriguez-Kabana R (1985) Phytonematode pathology: fungal modes of action. Nematropica 15(1):107–114

    Google Scholar 

  • Morgan-Jones G, Rodriguez-Kabana R (1987) Fungal biocontrol for the management of nematodes. In: Veech JA, Dickson DW (eds) Vistas on Nematology. Society of Nematologists, Hyattsville, Maryland, pp 94–99

    Google Scholar 

  • Morton CO, Hirsch PR, Kerry BR (2004) Infection of plant-parasitic nematodes by nematophagous fungi - a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 6(2):161–170

    CAS  Google Scholar 

  • Mukhtar T, Pervaz I (2003) In vitro evaluation of ovicidal and larvicidal effects of culture filtrate of Verticillium chlamydosporium against Meloidogyne javanica. Int J Agric Biol 4:576–579

    Google Scholar 

  • Nampoothiri KM, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A (2004) Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochem 39:1583–1590

    CAS  Google Scholar 

  • Nawani NN, Kapadnis BP (2005) Optimization of chitinase production using statistics based experimental designs. Process Biochem 40:651–660

    CAS  Google Scholar 

  • Nedwin GE, Schaefer T, Falholt P (2005) Enzyme discovery. Screening, cloning, evolving. Chem Eng Progress 101(10):48–55

    CAS  Google Scholar 

  • Nordbring-Hertz B (1988) Nematophagous fungi: strategies for nematode exploitation and for survival. Microbiol Sci 5(4):108–116

    PubMed  CAS  Google Scholar 

  • Nordbring-Hertz B, Jansson H-B, Tunlid A (2000) Nematophagous fungi. In: Encyclopedia life sciences. Macmillan, Basingstoke, pp 1–10

  • Olivares-Bernabeu CM, López-Llorca LV (2002) Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. Rev Iberoam Micol 19:104–110

    Google Scholar 

  • Orion D, Kritzman G, Meyer SLF, Erbe EF, Chitwood DJ (2001) A role of the gelatinous matrix in the resistance of root-knot nematode (Meloidogyne spp.) egg to microorganisms. J Nematol 33(4):203–207

    CAS  PubMed  Google Scholar 

  • Orion D, Wergin WP, Chitwood DJ, Erbe EF (1994) Low-temperature scanning electron microscope observations of the Meloidogyne incognita egg mass: the gelatinous matrix and embryo development. J Nematol 26(4):402–411

    CAS  PubMed  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation. I. Bioprocesses development and products. Process Biochem 35:1153–1169

    CAS  Google Scholar 

  • Park JO, Hargreaves JR, McConville EJ, Stirling GR, Ghisalberti EL, Sivasithamparam K (2004) Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett Appl Microbiol 38:271–276

    PubMed  CAS  Google Scholar 

  • Patidar P, Agrawal D, Banerjee T, Patil S (2005) Optimization of process parameters for chitinase production by soil isolates of Penicillium chrysogenum under solid substrate fermentation. Process Biochem 40:2962–2967

    CAS  Google Scholar 

  • Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzyme Microb Tech 26:473–483

    CAS  Google Scholar 

  • Pereira JL, Noronha EF, Miller RNG, Franco OL (2007) Novel insights in the use of hydrolytic enzymes secreted by fungi with biotechnological potential. Lett Appl Microbiol 44:573–581

    PubMed  CAS  Google Scholar 

  • Peter MG (2002) Chitin and chitosan in fungi. In: Steinbüchel A (ed) Biopolymers. Vol 6: Polysaccharides II. Wiley, Weinheim, pp 123–157

    Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21(9):400–407

    PubMed  CAS  Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200–206

    PubMed  CAS  Google Scholar 

  • Pyrowolakis A, Westphal A, Sikora RA, Becker JO (2002) Identification of root-knot nematode suppressive soils. Appl Soil Ecol 19:51–56

    Google Scholar 

  • Rast DM, Baumgartner D, Mayer C, Hollenstein GO (2003) Cell wall-associated enzymes in fungi. Phytochemistry 64:339–366

    PubMed  CAS  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Google Scholar 

  • Rey M, Delgado-Jarana J, Rincón AM, Limón MC, Benítez T (2000) Mejora de cepas de Trichoderma para su empleo como biofungicidas. Rev Iberoam Micol 17:31–36 (in Spanish)

    Google Scholar 

  • Robertus JD, Monzingo AF (1999) The structure and action of chitinases. EXS 87(1):125–135

    PubMed  CAS  Google Scholar 

  • Rubio MB, Hermosa MR, Keck E, Monte E (2005) Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb Ecol 49:25–33

    PubMed  CAS  Google Scholar 

  • Rumbos CI, Kiewnick S (2006) Effect of plant species on persistence of Paecilomyces lilacinus strain 251 in soil and on root colonization by the fungus. Plant Soil 283:25–31

    CAS  Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338

    CAS  Google Scholar 

  • Schenck S (2004) Control of nematodes in tomato with Paecilomyces lilacinus strain 251. Vegetable Report (Hawaii Agric. Res. Center) 5, 1–5

  • Schickler H, Haran S, Oppenheim A, Chet I (1998) Induction of the Trichoderma harzianum chitinolytic system is triggered by the chitin monomer, N-acetylglucosamine. Mycol Res 102:1224–1226

    CAS  Google Scholar 

  • Segers R, Butt TM, Kerry BR, Beckett A, Peberdy JF (1996) The role of the proteinase VCP1 produced by the nematophagous Verticillium chlamydosporium in the infection process of nematode eggs. Mycol Res 100(4):421–428

    CAS  Google Scholar 

  • Segers R, Butt TM, Kerry BR, Peberdy JF (1994) The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolysis host nematode proteins in situ. Microbiology 140:2715–2723

    PubMed  CAS  Google Scholar 

  • Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42

    Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    PubMed  CAS  Google Scholar 

  • Shaikh SA, Deshpande MV (1993) Chitinolytic enzymes: their contribution to basic and applied research. World J Microbiol Biotechnol 9:468–475

    CAS  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Biol Control 91(7):687–693

    CAS  Google Scholar 

  • Shubakov AA, Kucheryavykh PS (2004) Chitinolytic activity of filamentous fungi. Appl Biochem Microb 40(5):445–447

    CAS  Google Scholar 

  • Siddiqui IA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Biores Technol 58:229–239

    CAS  Google Scholar 

  • Siddiqui IA, Qureshi SA, Sultana V, Ehteshamul-Haque S, Ghaffar A (2000) Biological control of root rot-root knot disease complex of tomato. Plant Soil 227:163–169

    CAS  Google Scholar 

  • Silva GH, Oliveira DF, Campos VP (2002) Purificação de metabólitos fúngicos com efeitos tóxicos sobre Meloidogyne incognita. Fitopatol Bras 27(6):594–598 (in Portuguese)

    Google Scholar 

  • Spindler K-D, Splinder-Barth M, Londershausen M (1990) Chitin metabolism: a target for drugs against parasites. Parasitol Res 76:283–288

    PubMed  CAS  Google Scholar 

  • Steyaert JM, Stewart A, Jaspers MV, Carpenter M, Ridgway H (2004) Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by Trichoderma hamatum. Mycologia 96(6):1245–1252

    CAS  Google Scholar 

  • Stirling GR, Licastro KA, West LM, Smith LJ (1998) Development of commercially acceptable formulations of the nematophagous fungus Verticillium chlamydosporium. Biol Control 11:217–223

    Google Scholar 

  • Sun MH, Gao L, Shi YX, Li BJ, Liu XZ (2006) Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J Invertebr Pathol 93:22–28

    PubMed  Google Scholar 

  • Synowiecki J, Al-Khateeb NA (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci 43(2):145–171

    CAS  Google Scholar 

  • Taib M, Pinney JW, Westhead DR, McDowall KJ, Adams DJ (2005) Differential expression and extent of fungal/plant and fungal/bacterial chitinases of Aspergillus fumigatus. Arch Microbiol 184:78–81

    PubMed  CAS  Google Scholar 

  • Thamsborg SM, Roepstorff A, Larsen M (1999) Integrated and biological control of parasites in organic and conventional production systems. Vet Parasitol 84:169–186

    PubMed  CAS  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin - The undisputed biomolecule of great potential. Crit Rev Food Sci 43(1):61–87

    CAS  Google Scholar 

  • Tikhonov VE, López-Llorca LV, Salinas J, Jansson H-B (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    PubMed  CAS  Google Scholar 

  • Verdejo-Lucas S, Ornat C, Sorribas FJ, Stchiegel A (2002) Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almeria and Barcelona, Spain. J Nematol 34(4):405–408

    CAS  PubMed  Google Scholar 

  • Veronico P, Gray LJ, Jones JT, Bazzicalupo P, Arbucci S, Cortese MR, Di Vito M, De Giorgi C (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genomics 266:28–34

    PubMed  CAS  Google Scholar 

  • Westphal A, Becker JO (2001) Components of soil suppressiveness against Heterodera schachtii. Soil Biol Biochem 33:9–16

    CAS  Google Scholar 

  • Wharton D (1980) Nematode egg-shells. Parasitology 81:447–463

    Article  PubMed  CAS  Google Scholar 

  • Wilson CL (1997) Biological control and plant diseases - a new paradigm. J Ind Microbiol Biotechnol 19:158–159

    CAS  Google Scholar 

  • Yang J, Tian B, Liang L, Zhang K-Q (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31

    PubMed  CAS  Google Scholar 

  • Zareen A, Siddiqui IA, Aleem F, Zaki MJ, Shaukat SS (2001) Observation on the nematicidal effect of Fusarium solani on the root-knot nematode, Meloidogyne javanica. J Plant Pathol 83(3):207–214

    Google Scholar 

  • Zhu ML, Mo MH, Xia ZY, Li YH, Yang SJ, Li TF, Zhang KQ (2006) Detection of two fungal biocontrol agents against root-knot nematodes by RAPD markers. Mycopathologia 161:307–316

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roque Alberto Hours.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gortari, M.C., Hours, R.A. Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycol Progress 7, 221–238 (2008). https://doi.org/10.1007/s11557-008-0571-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-008-0571-3

Keywords

Navigation