Mycological Progress

, 6:249 | Cite as

Distribution of iron, cobalt, zinc and selenium in macrofungi

  • Jan BorovičkaEmail author
  • Zdeněk Řanda
Original Article


Samples of wild growing ectomycorrhizal and terrestrial saprobic macrofungi (mushrooms) were collected from unpolluted areas and analyzed for their iron, cobalt, zinc and selenium content. Trace elements were determined using long-term instrumental neutron activation analysis. In total, 217 samples, including 87 species of ectomycorrhizal fungi and 43 species of terrestrial saprobes, were examined. Distribution of trace element contents in ectomycorrhizal and saprobic macrofungi was investigated; results are thoroughly compared with previously published data. Doubtful literature data and ability of macrofungi to accumulate/concentrate investigated elements are discussed. Hygrophoropsis aurantiaca was found to concentrate Fe and Russula atropurpurea was confirmed as an effective Zn-accumulating species. Distribution of Se in ectomycorrhizal species was obviously different from that in saprobic species; selenium contents were higher in saprobic species (mostly above 2 ppm).


Ectomycorrhizal fungi Instrumental neutron activation analysis Terrestrial saprobes Trace elements 



Financial support was obtained from the project GAUK 261/2005/B-GEO/Prf, project GAUK 247/2006/B-GEO/Prf, project IRP AV0Z10480505 and Scientific Program MSM 0021620855 (Ministry of Education of the Czech Republic). We are very grateful to anonymous referees for their help and valuable comments during the development of this manuscript.


  1. Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suilllus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558PubMedCrossRefGoogle Scholar
  2. Agrahar-Murugkar D, Subbulakhsmi G (2005) Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem 89:599–603CrossRefGoogle Scholar
  3. Alonso J, García MA, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentrations factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188PubMedCrossRefGoogle Scholar
  4. Blanuša M, Kučak A, Varnai VM, Sarić MM (2001) Uptake of cadmium, copper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soil. J AOAC Int 84:1964–1971PubMedGoogle Scholar
  5. Borovička J, Řanda Z, Jelínek E (2005) Gold content of ectomycorrhizal and saprobic macrofungi from clean and unpolluted areas. Mycol Res 109:951–955CrossRefGoogle Scholar
  6. Borovička J, Řanda Z, Jelínek E (2006) Antimony content of macrofungi from clean and polluted areas. Chemosphere 64:1837–1844PubMedCrossRefGoogle Scholar
  7. Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res DOI  10.1016/j.mycres.2007.08.015
  8. Brooks RR (1998) General introduction. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals — their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, pp 1–14Google Scholar
  9. Byrne AR, Ravnik V, Kosta L (1976) Trace element concentrations in higher fungi. Sci Total Environ 6:65–78PubMedCrossRefGoogle Scholar
  10. Chansler MW, Mutanen M, Morris VC, Levander OA (1986) Nutritional bioavailability to rats of selenium in Brazil nuts and mushrooms. Nutr Res 6:1419–1428CrossRefGoogle Scholar
  11. Ciusa W, Giaccio M, Giacomo F, Angelucci R (1982) Vanadium, chromium, cobalt, copper, zinc, cadmium and lead content in several species of Basidiomycetes I. [In Italian]. Riv Merc 21:299–309Google Scholar
  12. Cocchi L, Vescovi L (1997) A study of chemical elements concentrations in some species of the Boletales order to evaluate a possible taxonomic role of such elements through an interpretation of chemical imprints [In Italian]. Il Fungo 15 Suppl.:42–60Google Scholar
  13. Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284CrossRefGoogle Scholar
  14. Colak A, Kolcuoğlu Y, Sesli E, Dalman Ö (2007) Biochemical composition of some Turkish fungi. Asian J Chem 19:2193–2199Google Scholar
  15. Collin-Hansen C, Yttri KE, Andersen RA, Berthelsen BO, Steinnes E (2002) Mushrooms from two metal-contaminated areas in Norway: occurrence of metals and metallothionein-like proteins. Geoch Expl Env A 2:121–130Google Scholar
  16. Collin-Hansen C, Andersen RA, Steinnes E (2005) Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol Res 109:1386–1396PubMedCrossRefGoogle Scholar
  17. Cromack K, Todd RL, Monk CD (1975) Patterns of basidiomycete nutrient accumulation in conifer and deciduous forest litter. Soil Biol Biochem 7:265–268CrossRefGoogle Scholar
  18. Demirbaş A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457CrossRefGoogle Scholar
  19. Drbal K, Kalač P (1976) Cobalt content in some edible macrofungi [In Czech]. Čes Mykol 30:24–26Google Scholar
  20. Drbal K, Kalač P, Šeflová A, Šefl J (1975) Iron and manganese content in some edible macrofungi [In Czech]. Čes Mykol 29:110–114Google Scholar
  21. Falandysz J, Lipka K (2006) Selenium in mushrooms [In Polish]. Roczn PZH 57:217–238Google Scholar
  22. Falandysz J, Szymczyk K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki SI (2001) ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam 18:503–513PubMedCrossRefGoogle Scholar
  23. Fomina M, Charnock JM, Hillier S, Alexander IJ, Gadd GM (2006) Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52:322–333PubMedCrossRefGoogle Scholar
  24. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49PubMedCrossRefGoogle Scholar
  25. Gergely V, Kubachka KM, Mounicou S, Fodor P, Caruso JA (2006) Selenium speciation in Agaricus bisporus and Lentinula edodes mushroom proteins using multi-dimensional chromatography coupled to inductively coupled plasma mass spectrometry. J Chromatogr A 1101:94–102PubMedCrossRefGoogle Scholar
  26. Huerta VD, Sánchez MLF, Sanz-Medel A (2005) Qualitative and quantitative speciation analysis of water soluble selenium in three edible wild mushrooms species by liquid chromatography using post-column isotope dilution ICP-MS. Anal Chim Acta 538:99–105CrossRefGoogle Scholar
  27. Huerta VD, Sánchez MLF, Sanz-Medel A (2006) An attempt to differentiate HPLC-ICP-MS selenium speciation in natural and selenised Agaricus mushrooms using different species extraction procedures. Anal Bioanal Chem 384:902–907CrossRefGoogle Scholar
  28. Işiloğlu M, Merdivan M, Yilmaz F (2001) Heavy Metal Contents in some macrofungi collected in the northwestern part of Turkey. Arch Environ Contam Toxicol 41:1–7PubMedCrossRefGoogle Scholar
  29. Jorhem L, Sundström B (1995) Levels of some trace elements in edible fungi. Z Lebensm Unters Forsch 201:311–316PubMedCrossRefGoogle Scholar
  30. Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  31. Kalač P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35CrossRefGoogle Scholar
  32. Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281CrossRefGoogle Scholar
  33. Kalač P, Wittingerová J, Stašková J (1989) Content of seven biogenous elements in macrofungi [In Czech]. Potravinářské Vědy 7:131–136Google Scholar
  34. Lasota W, Kalinowski R (1985) Selenium content in some species of macrofungi [In Polish]. Bromat Chem Toksykol 18:7–10Google Scholar
  35. Lepšová A, Mejstřík V (1988) Accumulation of trace elements in the fruiting bodies of macrofungi in the Krušné hory mountains, Czechoslovakia. Sci Total Environ 76:117–128PubMedCrossRefGoogle Scholar
  36. Mandić MI, Grgić J, Grgić Z, Trstenjak-Petrović Ž (1991) The natural level of selenium in wildlife mushrooms in Eastern Croatia. Prehrambeno-Technol Biotechnol Rev 29:159–161Google Scholar
  37. Meisch HU, Schmitt JA, Reinle W (1977) Heavy metals in macrofungi. Cadmium, zinc and copper [In German]. Z Naturforsch 32c:172–181Google Scholar
  38. Michelot D, Siobud E, Doré JC, Viel C, Poirier F (1998) Update on metal content profiles in mushrooms — toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36:1997–2012PubMedCrossRefGoogle Scholar
  39. Mlodecki H, Lasota W, Tersa S (1965) Macrofungi as a source of cobalt in foodstaffs [In Polish]. Farm Pol 9–10:337–339Google Scholar
  40. Muñoz AHS, Corona FG, Wrobel K, Soto GM, Wrobel K (2005) Subcellular distribution of aluminum, bismuth, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus). Biol Trace Elem Res 106:265–277PubMedCrossRefGoogle Scholar
  41. Muñoz AHS, Kubachka K, Wrobel K, Corona FG, Yathavakilla SKV, Caruso JA, Wrobel K (2006) Se-enriched mycelia of Pleurotus ostreatus: Distribution of selenium in cell walls and cell membranes/cytosol. J Agric Food Chem 54:3440–3444CrossRefGoogle Scholar
  42. Mutanen M (1986) Bioavailability of selenium in mushrooms, Boletus edulis, to young women. Internat J Vit Nutr Res 56:297–301Google Scholar
  43. Nikkarinen M, Mertanen E (2004) Impact of geological origin on trace element composition of edible mushrooms. J Food Comp Anal 17:301–310CrossRefGoogle Scholar
  44. Ogra Y, Ishiwata K, Encinar JR, Lobinski R, Suzuki KT (2004) Speciation of selenium in selenium-enriched shiitake mushroom, Lentinula edodes. Anal Bioanal Chem 379:861–866PubMedCrossRefGoogle Scholar
  45. Piepponen S, Liukkonen-Lilja H, Kuusi T (1983) The selenium content of edible mushrooms in Finland. Z Lebensm Unters Forsch 177:257–260PubMedCrossRefGoogle Scholar
  46. Piepponen S, Pellinen MJ, Hattula T (1984) The selenium content of mushrooms. In: Brätter P, Schramel P (eds) Trace element — analytical chemistry in medicine and biology, vol 3. Walter de Gruyter, Berlin, pp 159–166Google Scholar
  47. Quinche JP (1980a) Content of several trace elements in Agaricus campester [In French]. Bull Romand Mycol 2:20Google Scholar
  48. Quinche JP (1980b) Contents of eight trace elements in Tricholoma georgii [In French]. Bull Romand Mycol 3:20Google Scholar
  49. Quinche JP (1981) Contents of eight trace elements in Marasmius oreades [In French]. Bull Romand Mycol 5:20–21Google Scholar
  50. Quinche JP (1983a) Contents of eight trace elements in Boletus edulis [In French]. Mycol Helv 1:89–94Google Scholar
  51. Quinche JP (1983b) Selenium content of 95 macrofungal species and underlying soils [In French]. Schweiz Landw Forsch 22:137–144Google Scholar
  52. Quinche JP (1987) Contents of eight trace elements in Lepista nuda [In French]. Mycol Helv 2:173–181Google Scholar
  53. Quinche JP (1988a) Contents of eight trace elements in Amanita muscaria [In French]. Bull Romand Mycol 10:15Google Scholar
  54. Quinche JP (1988b) Uptake of eight trace elements by Lactarius piperatus [In French]. Bull Romand Mycol 10:19Google Scholar
  55. Quinche JP (1990) Lycoperdon perlatum — mushroom that accumulates heavy metals and selenium [In French]. Mycol Helv 3:477–486Google Scholar
  56. Quinche JP (1992) Contents of eight trace elements in Coprinus comatus fruit bodies. Mycol Helv 5:133–142Google Scholar
  57. Řanda Z, Kučera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem 259:99–107CrossRefGoogle Scholar
  58. Řanda Z, Soukal J, Mizera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macromycetes (mushrooms). J Radioanal Nucl Chem 264:67–76CrossRefGoogle Scholar
  59. Rudawska M, Leski T (2005a) Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Sci Tot Env 339:103–115CrossRefGoogle Scholar
  60. Rudawska M, Leski T (2005b) Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem 92:499–506CrossRefGoogle Scholar
  61. Schmitt JA, Meisch HU, Reinle W (1977) Heavy metals in macrofungi, II. Manganese and iron. Z Naturforsch 32c:712–723Google Scholar
  62. Sesli E (2006) Trace element contents of some selected fungi in the ecosystem of Turkey. Fresenius Env Bull 15:518–523Google Scholar
  63. Sesli E (2007) Trace metal content of higher fungi from Zigana Highland in Turkey. Asian J Chem 19:636–640Google Scholar
  64. Sesli E, Dalman Ö (2006) Concentrations of trace elements in fruiting bodies of wild growing fungi in Rize Province of Turkey. Asian J Chem 18:2179–2184Google Scholar
  65. Sesli E, Tüzen M (1999) Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chem 65:453–460CrossRefGoogle Scholar
  66. Sesli E, Tuzen M (2006) Micro- and macroelement contents of edible wild growing mushrooms in Artvin Province of Turkey. Asian J Chem 18:1423–1429Google Scholar
  67. Siobud-Dorocant E, Doré JC, Michelot D, Poirier F, Viel C (1999) Multivariate analysis of metal concentration profiles in mushrooms. SAR QSAR Environ Res 10:315–370PubMedCrossRefGoogle Scholar
  68. Šlejkovec Z, Elteren JT, Woroniecka UD, Kroon KJ, Falnoga I, Byrne AR (2000) Preliminary study on the determination of selenium compounds in some selenium-accumulating mushrooms. Biol Trace Elem Res 75:139–155PubMedCrossRefGoogle Scholar
  69. Stankevičiené D (1996) Heavy metals in agaricoid fungi growing in North Lithuania. Botanica Lithuanica 2:233–243Google Scholar
  70. Stijve T (1977) Selenium content of mushrooms. Z Lebensm Unters Forsch 164:201–203PubMedCrossRefGoogle Scholar
  71. Stijve T (1997) Close encounters with Clathrus ruber, the latticed stinkhorn. Czech Mycol 50:63–70Google Scholar
  72. Stijve T, Besson R (1976) Mercury, cadmium, lead, and selenium content of mushroom species belonging to the genus Agaricus. Chemosphere 5:151–158CrossRefGoogle Scholar
  73. Stijve T, Blake C (1994) Bioconcentration of manganese and iron in Panaeoloidae Sing. Persoonia 15:525–529Google Scholar
  74. Stijve T, Cardinale E (1974) Selenium and mercury content of some edible mushrooms. Trav Chim Aliment Hyg 65:476–478Google Scholar
  75. Stijve T, Noorloos T, Byrne AR, Šlejkovec Z, Goessler W (1998) High selenium levels in edible Albatrellus mushroom. Deut Lebens-Rundsch 94:275–279Google Scholar
  76. Stijve T, Andrey D, Goessler W, Guinberteau J, Dupuy G (2001) Comparative study on heavy metals and other trace elements in Gyrophragmium dunalii and flavescent Agaricus species of the section Arvenses [In French]. Bull Soc Mycol Fr 117:133–144Google Scholar
  77. Turkekul I, Elmastas M, Tüzen M (2004) Determination of iron, copper, manganese, zinc, lead and cadmium in mushroom samples from Tokat, Turkey. Food Chem 84:389–392CrossRefGoogle Scholar
  78. Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810CrossRefGoogle Scholar
  79. Tyler G (1980) Accumulation and exclusion of metals in Collybia peronata and Amanita rubescens. Trans Brit Mycol Soc 79:239–245CrossRefGoogle Scholar
  80. Valiulis D, Stankevičiené D, Kvietkus K (1995) Metal accumulation in some fungi species growing in Lithuania. Atmospheric Physics 17:47–51Google Scholar
  81. Vetter J (1989) Investigation of trace elements in macrofungi [In German]. Int J Mycol Lichenol 4:107–135Google Scholar
  82. Vetter J (1990) Mineral element content of edible and poisonous macrofungi. Acta Alim 19:27–40Google Scholar
  83. Vetter J (1994) Copper, manganese, and zinc contents in some edible macrofungi [In German]. Z Lebensm Unters Forsch 198:469–472PubMedCrossRefGoogle Scholar
  84. Vetter J (2005) Mineral composition of basidiomes of Amanita species. Mycol Res 109:746–750PubMedCrossRefGoogle Scholar
  85. Vetter J, Siller I, Horváth Z (1997) Zinc content of sporocarps of basidiomycetes fungi. Mycologia 89:481–483CrossRefGoogle Scholar
  86. Vogt KA, Edmonds RL, Grier CC (1981) Biomass and nutrient concentrations of sporocarps produced by mycorrhizal and decomposer fungi in Abies amabilis stands. Oecologia 50:170–175CrossRefGoogle Scholar
  87. Weeks CA, Croasdale M, Osborne MA, Hewitt L, Miller PF, Robb P, Baxter MJ, Warriss PD, Knowles TG (2006) Multi-element survey of wild edible mushrooms and blackberries in the UK. Food Add Contam 23:140–147CrossRefGoogle Scholar
  88. Wilburn RT, Vonderheide AP, Soman RS, Caruso JA (2004) Speciation of selenium in the mushroom Boletus edulis by high-performance liquid chromatography coupled to inductively coupled plasma-mass spectrometry with a collision cell. Appl Spectr 58:1251–1255CrossRefGoogle Scholar
  89. Yeşil ÖF, Yildiz A, Yavuz Ö (2004) Level of heavy metals in some edible and poisonous macrofungi of Diyarbakir region in Turkey. Bull Environ Contam Toxicol 73:853–861PubMedCrossRefGoogle Scholar
  90. Zhao L, Zhao G, Zhao Z, Chen P, Tong J, Hu X (2004) Selenium distribution in a Se-enriched mushrooms species of the genus Ganoderma. J Agric Food Chem 52:3954–3959PubMedCrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer 2007

Authors and Affiliations

  1. 1.Institute of Geochemistry, Mineralogy and Mineral ResourcesCharles UniversityPrague 2Czech Republic
  2. 2.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicŘež near PragueCzech Republic

Personalised recommendations