Skip to main content

Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control

An Erratum to this article was published on 07 September 2007

Abstract

Indoor wood-decay fungi cause considerable economical damage. Most of the structural damage to the indoors of buildings in Europe and North America is caused by brown-rot fungi that degrade conifer wood; white-rot fungi, which preferentially attack hardwoods, are less common. This review covers the approximately 80 basidiomycetes that commonly occur in buildings. Emphasis was placed on Serpula lacrymans, which is the most common indoor basidiomycete in central Europe. Meruliporia incrassata, the North American pendant to S. lacrymans, has also received considerable attention. In terms of indoor wood decay, moisture and temperature are the most important influences. Wood samples with a low moisture content can be degraded. High temperatures as an alternative control measure do not kill mycelia, with some species surviving in wood samples in the form of heat-resistant arthrospores at temperatures as high 95°C. For refurbishment and scientific purposes, the identity of the causal species should be known. More recently, several molecular techniques have been used to identify fungi; these results are often conflicting with those obtained by other, earlier applied methods. Sequencing of the internal transcribed spacers (ITS) of the rDNA is currently the best molecular tool. Among the other methods available, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) has also been shown to be able to distinguish closely related sister taxa. For further characterization of indoor basidiomycetes, the complete sequences of the 18S, 28S rDNA and the intergenic spacers with the included 5S rDNA have been acquired for some species. If current projects involving whole funal genome sequencing are not taken into account, Antrodia vaillantii is the first basidiomycete for which the complete rDNA sequence has been deposited. The review closes with fundamentals on the prevention and control of indoor wood decay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adair S, Kim SH, Breuil C (2002) A molecular approach for early monitoring of decay basidiomycetes in wood chips. FEMS Microbiol Lett 211:117–122

    PubMed  CAS  Google Scholar 

  • Agerer R, Iosifidou P (2004) Rhizomorph structures of Hymenomycetes: a possibility to test DNA-based phylogenetic hypotheses? In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW, Eching, pp 249–302

    Google Scholar 

  • Alfredsen G, Solheim H, Jenssen KM (2005) Evaluation of decay fungi in Norwegian buildings. In: Int Res Group Wood Protection 36th Ann Conf. IRG/WP/10562:1–12

  • Anagnost SE (1998) Light microscopic diagnosis of wood decay. IAWA J 19:141–167

    Google Scholar 

  • Bao D, Ishihara H, Mori N, Kitamoto Y (2004) Phylogenetic analysis of oyster mushrooms (Pleurotus spp.) based on restriction fragment length polymorphisms of the 5′ portion of 26S rDNA. J Wood Sci 50:169–176

    CAS  Google Scholar 

  • Bavendamm W (1952) Lentinus lepideus (Buxb.) Fr. Holz Roh-Werkstoff 10:337–338

    Google Scholar 

  • Bavendamm W (1953) Paxillus panuoides Fr. Holz Roh-Werkstoff 11:331–332

    Google Scholar 

  • Bech-Andersen J (1985) Alkaline building materials and controlled moisture conditions as causes for dry rot Serpula lacrymans growing only in houses. International Research Group on Wood Preservation Document, Secretariat, Stockholm, IRG/WP/1272:1–5

  • Bech-Andersen J (1995) The dry rot fungus and other fungi in houses. Hussvamp Laboratoriet Forlag, Gl. Holte, Denmark

  • Bech-Andersen J, Andersen C (1992) Theoretical and practical experiments with eradication of the dry rot fungus by means of microwaves. International Research Group on Wood Preservation Document, Secretariat, Stockholm, IRG/WP/1577:1–4

  • Benko R, Highley TL (1990) Selection of media for screening interaction of wood-attacking fungi and antagonistic bacteria. II. Interaction on wood. Mater Org 25:174–180

    Google Scholar 

  • Blanz PA, Gottschalk M (1986) Systematic position of Septobasidium, Graphiola and other basidiomycetes as deduced on the basis of their 5S ribosomal RNA nucleotide sequence. Syst Appl Microbiol 8:121–127

    CAS  Google Scholar 

  • Blei M, Fiedler K, Rüden H, Schleibinger HW (2005) Differenzierung von Holz zerstörenden Pilzen mittels ihrer mikrobiellen flüchtigen organischen Verbindungen (MVOC). In: Keller R, Senkpiel K, Samson RA, Hoekstra (eds) Mikrobielle allergische und toxische Verbindungen. Schriftenr Inst Medizin Mikrobiol Hygiene Univ Lübeck 9, pp 163–178

  • Blow DP (1987) The biodeterioration of in-service timber in buildings. In: The biodeterioration of constructional materials. Biodetection Society, Kew, pp 115–127

  • Bravery AF, Berry RW, Carey JK, Cooper DE (2003) Recognising wood rot and insect damage in buildings, 2nd edn. Building Research Establishment, Watford

    Google Scholar 

  • Breitenbach J, Kränzlin F (1986) Pilze der Schweiz, vol 2. Nichtblätterpilze. Mykologia, Lucerne

    Google Scholar 

  • Bresinsky A, Jarosch M, Fischer M, Schönberger I, Wittmann-Bresinsky B (1999) Phylogenetic relationships within Paxillus s.l. (Basidiomycetes, Boletales): separation of a southern hemisphere genus. Plant Biol 1:327–333

    CAS  Google Scholar 

  • Bricknell JM (1991) Surveying to determine the presence and extent of an attack of dry rot within buildings in the United Kingdom. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 95–115

    Google Scholar 

  • Bruce A (1998) Biological control of wood decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor & Francis, London Bristol

    Google Scholar 

  • Bruce A (2000) Role of VOCs and other antagonistic mechanisms in the biological control of wood deterioration fungi by Trichoderma spp. and other antagonists. In: Ochrona Drewna 20th Symp. Polska Akad Nauk, Drewna, pp 17–25

  • Burdsall HH (1991) Meruliporia (Poria) incrassata: Occurrence and significance in the United States as a dry rot fungus. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 189–191

    Google Scholar 

  • Cartwright KStG, Findlay WPH (1958) Decay of timber and its prevention, 2nd edn. His Majesty’s Stationery Office, London

    Google Scholar 

  • Chillali M, Wipf D, Guillaumin J-J, Mohammed C, Botton B (1998) Delineation of the European Armillaria species based on the sequences of the internal transcribed spacer (ITS) of ribosomal DNA. New Phytol 138:553–561

    CAS  Google Scholar 

  • Clarke RW, Jennings DH, Coggins RW (1980) Growth of Serpula lacrymans in relation to water potential of substrate. Trans Br Mycol Soc 75:271–280

    Google Scholar 

  • Clausen C (1997) Immunological detection of wood decay fungi- an overview of techniques developed from 1986 to present. Int Biodeter Biodegrad 39:133–143

    Google Scholar 

  • Clausen CA, Kartal SN (2003) Accelerated detection of brown-rot decay: comparison of soil block test, chemical analysis, mechanical properties, and immunodetection. Forest Prod J 53:90–94

    CAS  Google Scholar 

  • Cockcroft R (ed) (1981) Some wood-destroying basidiomycetes, vol 1. International Research Group on Wood Preservation, Boroko, Papua New Guinea, pp 1–186

  • Coetzee MPA, Wingfield BD, Bloomer P, Wingfield MJ (2005) Phylogenetic analyses of DNA sequences reveal species partitions amongst isolates of Armillaria from Africa. Mycol Res 109:1223–1234

    PubMed  CAS  Google Scholar 

  • Coggins CR (1980) Decay of timber in buildings. Dry rot, wet rot and other fungi. Rentokil, East Grinstead

    Google Scholar 

  • Collett O (1992) Comparative tolerance of the brown-rot fungus Antrodia vaillantii (DC.:Fr.) Ryv. isolates to copper. Holzforschung 46:293–298

    CAS  Google Scholar 

  • Da Costa EWB, Kerruish RM (1964) Tolerance of Poria species to copper-based wood preservatives. For Prod J 14:106–112

    Google Scholar 

  • Diaz MR, Boekhout T, Kiesling T, Fell JW (2005) Comparative analysis of the intergenic spacer regions and population structure of the species complex of the pathogenic yeast Cryptococcus neoformans. FEMS Yeast Res 5:1129–1140

    PubMed  CAS  Google Scholar 

  • Diehl SV, Prewitt ML, Moore Shmulsky F (2003) Use of fatty acid profiles to identify white-rot wood decay fungi. In: Goodell B, Nicholas DB, Schultz TP (eds) Wood deterioration and preservation. ACS Symp Ser 845. Am Chem Soc, Washington D.C., pp 313–324

  • Diehl SV, McElroy TC, Prewitt ML (2004) Development and implementation of a DNA-RFLP database for wood decay and wood associated fungi. International Research Group on Wood Preservation Document IRG/WP/10527:1–8

  • DIN [Deutsches Institut für Normung (German National Standards Organization)] 68 800, Part 4 (1992) Wood preservation; control measures against wood-destroying fungi and insects. Beuth, Berlin

    Google Scholar 

  • Dirol D, Vergnaud J-M (1992) Water transfer in wood in relation to fungal attack in buildings-effect of condensation and diffusion. International Research Group on Wood Preservation Document IRG/WP/1543:1–17

  • Doi S (1991) Serpula lacrymans in Japan. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 173–187

    Google Scholar 

  • Doi S, Yamada A (1991) Antagonistic effect of Trichoderma spp. against Serpula lacrymans in the soil treatment test. J Hokkaido For Prod Res Inst 6:1–5

    Google Scholar 

  • Dreger I (2006) Thermal treatment with infrared-radiation – an effective control measure against biotic wood-destroyers? In: Int Conf “Wood-Destroying Organisms in Focus-Alternative Measures for Preservation of Historic Buildings”. Detmold, Germany, pp 52–53

  • Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. Chapman & Hall, London

    Google Scholar 

  • Eikenes M, Hietala A, Alfredsen G, Fossdal CG, Solheim H (2005) Comparison of quantitative real-time PCR, chitin and ergosterol assays for monitoring colonization of Trametes versicolor in birch wood. Holzforschung 59:568–573

    CAS  Google Scholar 

  • Elliott ML, Watkinson S (1989) The effect of α-aminoisobutyric acid on wood decay and wood spoilage fungi. Int Biodetect 25:355–371

    CAS  Google Scholar 

  • EN (European Standards)113 (1996) Determination of toxic values of wood preservatives against wood destroying basidiomycetes cultured on agar medium. European Committee Standardization, Brussels

  • Falck R (1909) Die Lenzites-Fäule des Coniferenholzes. Hausschwammforsch 3:1–234

    Google Scholar 

  • Falck R (1912) Die Meruliusfäule des Bauholzes. Hausschwammforsch 6:1–405

    Google Scholar 

  • Falck R (1927) Gutachten über Schwammfragen. Hausschwammforsch 9:12–64

    Google Scholar 

  • Fan M, Chen L-C, Ragan MA, Gutell RR, Warner JR, Currie BP, Casadevall A (1995) The 5S rRNA and the rRNA intergenic spacer of the two varieties of Cryptococcus neoformans. J Med Vet Mcol 33:215–221

    CAS  Google Scholar 

  • Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171

    PubMed  CAS  Google Scholar 

  • Fischer M, Wagner T (1999) RFLP analysis as a tool for identification of lignicolous basidiomycetes: European polypores. Eur J For Pathol 29:295–304

    Google Scholar 

  • Garbelotto M, Ratcliff A, Bruns TD, Cobb FW, Otrosina WJ (1996) Use of taxon-specific competitive-priming PCR to study host specifity, hybridization, and intergroup gene flow in intersterility groups of Heterobasidion annosum. Phytopathology 86:543–551

    CAS  Google Scholar 

  • Gilbertson RL, Ryvarden L (1987) North American polypores, vol 2. Fungiflora, Oslo

    Google Scholar 

  • Ginns J (1978) Leucogyrophana (Aphyllophorales): identification of species. Can J Bot 56:1953–1973

    Google Scholar 

  • Ginns J (1982) A monograph of the genus Coniophora (Aphyllophorales, Basidiomycetes). Opera Bot 61:1–61

    Google Scholar 

  • Giron MY, Morrell JJ (1989) Interactions between microfungi: isolated from fumigant-treated Douglas-fir heartwood and Poria placenta and Poria carbonica. Mater Org 24:39–49

    Google Scholar 

  • Göller K, Rudolph D (2003) The need for unequivocally defined reference fungi-genomic variation in two strains named as Coniophora puteana BAM Ebw. 15. Holzforschung 57:456–458

    Google Scholar 

  • Goodell B, Nicholas DD, Schulz TP (eds) (2003) Wood deterioration and preservation. Advances in our changing world. ACS Symp Ser 845. Am Chem Soc, Washington D.C.

  • Green F, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeter Biodegrad 51:145–149

    CAS  Google Scholar 

  • Griffin DM (1977) Water potential and wood-decay fungi. Annu Rev Phytopath ol15:319–329

    Google Scholar 

  • Grosser D (1985) Pflanzliche und tierische Bau-und Werkholzschädlinge. DRW Weinbrenner, Leinfelden-Echterdingen

    Google Scholar 

  • Gründlinger R (1997) Der echte Hausschwamm-Serpula lacrymans (Schumacher ex Fries) SF Gray. Holzforsch Holzverwert 6:115–120

    Google Scholar 

  • Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K (2002) Identification of prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1 spacer characterization. Mycol Res 106:435–443

    CAS  Google Scholar 

  • Guillitte O (1992) Epidémiologie des attaques. In: La mérule et autres champignons nuisable dans les bâtiments. Jardin Bot Nat Belg, Domaine Bouchout, pp 34–42

  • Hahn C, Agerer R (1999) Studien zur Systematik der Paxillaceae (Boletales, Basidiomycota). Sendtnera 6:115–133

    Google Scholar 

  • Harmsen L (1953) Merulius tignicola Harmsen, eine neue Hausschwamm-Art in Dänemark. Holz Roh-Werkstoff 11:68–69

    Google Scholar 

  • Harmsen L (1978) Draft of a monographic card for Serpula himantioides (Fr.) Karst. International Research Group on Wood Preservation Document, IRG/WP/174:1–8

  • Harmsen L, Bakshi BK, Choudhury TG (1958) Relationship between Merulius lacrymans and M. himantioides. Nature 4614:1011

    Google Scholar 

  • Hastrup ACS, Green F, Clausen CA, Jensen B (2005) Tolerance of Serpula lacrymans to copper-based wood preservatives. Int Biodeter Biodegrad 56:173–177

    CAS  Google Scholar 

  • Hietala A, Eikenes M, Kvaalen H, Solheim H, Fossdal C (2003) Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Appl Environ Microbiol 69:4413–4420

    PubMed  CAS  Google Scholar 

  • Highley TL, Ricard J (1988) Antagonism of Trichoderma spp. and Gliocladium virens against wood decay fungi. Mater Org 23:157–169

    Google Scholar 

  • Högberg N, Land CJ (2004) Identification of Serpula lacrymans and other decay fungi in construction timber by sequencing of ribosomal DNA – a practical approach. Holzforschung 58:199–204

    Google Scholar 

  • Högberg N, Svegården IB, Kauserud H (2006) Isolation and characterization of fifteen polymorphic microsatellite markers for the devasting dry rot fungus Serpula lacrymans. Mol Ecol Notes 6:1022–1024

    Google Scholar 

  • Horisawa S, Sakuma Y, Takata K, Doi S (2004) Detection of intra- and interspecific variation of the dry rot fungus Serpula lacrymans by PCR-RFLP and RAPD analysis. J Wood Sci 50:427–432

    CAS  Google Scholar 

  • Huckfeldt T (2002) Hausfäulepilze. http://www.hausschwaminfo.de

  • Huckfeldt T, Schmidt O (2006a) Hausfäule-und Bauholzpilze. Rudolf Müller, Cologne

    Google Scholar 

  • Huckfeldt T, Schmidt O (2006b) Identification key for European strand-forming house-rot fungi. Mycologist 20:42–56

    Google Scholar 

  • Huckfeldt T, Kleist G, Quader H (2000) Vitalitätsansprache des Hausschwammes (Serpula lacrymans) und anderer holzzerstörender Pilze. Z Mykol 66:35–44

    Google Scholar 

  • Humar M, Petriè M, Pohleven F (2001) Changes of the pH value of impregnated wood during exposure to wood-rotting fungi. Holz Roh-Werkstoff 59:288–293

    CAS  Google Scholar 

  • Hwang S-K, Kim J-K (1995) Nucleotide sequence analysis of the 5S ribosomal RNA gene of the mushroom Tricholoma matsutake. J Microbiol 33:136–141

    CAS  Google Scholar 

  • Jahn H (1990) Pilze an Bäumen. Patzer, Berlin

    Google Scholar 

  • James TY, Moncalvo J-M, Li S, Vilgalys R (2001) Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 157:149–161

    PubMed  CAS  Google Scholar 

  • Jarosch M, Besl H (2001) Leucogyrophana, a polyphyletic genus of the order Boletales (Basidiomycetes). Plant Biol 3:443–448

    Google Scholar 

  • Jellison J, Goodell B (1988) Immunological detection of decay in wood. Wood Sci Technol 22:293–297

    CAS  Google Scholar 

  • Jellison J, Howell C, Goodell B, Quarles SL (2004) Investigations into the biology of Meruliporia incrassata. International Research Group on Wood Preservation Document, IRG/WP/10508:1–9

  • Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215–243

    CAS  Google Scholar 

  • Jennings DH (1991) The physiology and biochemistry of the vegetative mycelium. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 55–79

    Google Scholar 

  • Jennings DH, Bravery AF (eds) (1991) Serpula lacrymans: fundamental biology and control strategies. Wiley, Chichester

  • Johannesson H, Stenlid J (1998) Molecular identification of wood-inhabiting fungi in an unmanaged Picea abies forest in Sweden. For Ecol Manage 4525:1–9

    Google Scholar 

  • Johnson BR, Chen GC (1983) Occurrence and inhibition of chitin in cell walls of wood-decay fungi. Holzforschung 37:255–259

    CAS  Google Scholar 

  • Karjalainen R (1996) Genetic relatedness among strains of Heterobasidion annosum as detected by random amplified polymorphic DNA markers. J Phytopathol 144:399–404

    Google Scholar 

  • Karlsson J-O, Stenlid J (1991) Pectic isozyme profiles of intersterility groups in Heterobasidion annosum. Mycol Res 95:531–536

    CAS  Google Scholar 

  • Kartal SN, Munir E, Kakitani T, Imamura Y (2004) Bioremediation of CCA-treated wood by brown-rot fungi Fomitopsis palustris, Coniophora puteana and Laetiporus sulphureus. J Wood Sci 50:182–188

    CAS  Google Scholar 

  • Kasuga T, Mitchelson KR (2000) Intersterility group differentiation in Heterobasidion annosum using ribosomal IGS1 region polymorphism. For Pathol 30:329–344

    Google Scholar 

  • Kauserud H, Högberg N, Knudsen H, Elbornes SA, Schumacher T (2004a) Molecular phylogenetics suggest a North American link between the anthropogenic dry rot fungus Serpula lacrymans and its wild relative S. himantioides. Mol Ecol 13:3137–3146

    PubMed  CAS  Google Scholar 

  • Kauserud H, Schmidt O, Elfstrand M, Högberg N (2004b) Extremely low AFLP variation in the European dry rot fungus (Serpula lacrymans): implications for self/nonself-recognition. Mycol Res 108:1264–1270

    PubMed  CAS  Google Scholar 

  • Kauserud H, Sætre G-P, Schmidt O, Decock C, Schumacher T (2006) Genetics of self/nonself recognition in Serpula lacrymans. Fung Genet Biol 43:503–510

    CAS  Google Scholar 

  • Kauserud H, Svegården IB, Sætre G-P, Knudsen H, Stensrud Ø, Schmidt O, Doi S, Sugiyama T, Högberg N (2007) Asian origin and rapid global spread of the destructive dry rot fungus Serpula lacrymans. Mol Ecol 16 (in press)

  • Kim YS, Goodell B, Jellison J (1993) Immunogold labelling of extracellular metabolites from the white-rot fungus Trametes versicolor. Holzforschung 47:25–28

    CAS  Google Scholar 

  • Kjerulf-Jensen C, Koch AP (1992) Investigation of microwave heating as a means of eradicating dry rot attack in buildings. International Research Group on Wood Preservation Document, IRG/WP/1545:1–9

  • Kleist G, Seehann G (1999) Der Eichenporling, Donkioporia expansa-ein wenig bekannter Holzzerstörer in Gebäuden. Z Mykol 65:23–32

    Google Scholar 

  • Koch A-P (1991) The current status of dry rot in Denmark and control strategies. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 147–154

    Google Scholar 

  • Korpi A, Pasanen AL, Viitanen H (1999) Volatile metabolites of Serpula lacrymans, Coniophora puteana, Poria placenta, Stachybotris chartarum and Chaetomium globosum. Build Environ 34:205–211

    Google Scholar 

  • La Porta N, Capretti P, Kammiovirta K, Karjalainen R, Korhonen K (1997) Geographical cline of DNA variation within the F intersterility group of Heterobasidion annosum in Italy. Plant Pathol 46:773–784

    Google Scholar 

  • Leithoff H, Stephan I, Lenz MT, Peek R-D (1995) Growth of the copper tolerant brown rot fungus Antrodia vaillantii on different substrates. International Research Group on Wood Preservation Document, IRG/WP/10121:1–10

  • Li TY, Liu BH, Chen YC (2000) Characterization of Aspergillus spores my matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14:2393–2400

    PubMed  CAS  Google Scholar 

  • Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Annu Rev Phytopathol 8:231–258

    Google Scholar 

  • Lloyd JD, Dickinson DJ (1992) Comparison of the effect of borate, germanate and tellurate on fungal growth and wood decay. International Research Group on Wood Preservation Document, IRG/WP/1533:1–16

  • Lohwag K (1954) Der Hausschwamm Gyrophana lacrymans (Wulf.) Pat. und seine Begleiter. Sydowia II 6:268–283

    Google Scholar 

  • Lombard FF, Chamuris GP (1990) Basidiomycetes. In: Wang CJK, Zabel RA (eds) Identification manual for fungi from utility poles in the eastern United States. Am Type Culture Collection, Rockville, pp 21–104

    Google Scholar 

  • Martin F, Selosse M-A, Le Tacon F (1999) The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor: structural analysis and allelic polymorphism. Microbiology 145:1605–1611

    PubMed  CAS  Google Scholar 

  • Moreth U, Schmidt O (2000) Identification of indoor rot fungi by taxon-specific priming polymerase chain reaction. Holzforschung 54:1–8

    CAS  Google Scholar 

  • Moreth U, Schmidt O (2005) Investigations on ribosomal DNA of indoor wood decay fungi for their characterization and identification. Holzforschung 59:90–93

    CAS  Google Scholar 

  • Nobles MK (1965) Identification of cultures of wood-inhabiting hymenomycetes. Can J Bot 43:1097–1139

    Article  Google Scholar 

  • Nuss I, Jennings DH, Veltkamp CJ (1991) Morphology of Serpula lacrymans. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 9–38

    Google Scholar 

  • Paajanen LM (1993) Iron promotes decay capacity of Serpula lacrymans. International Research Group on Wood Preservation Document, IRG/WP/10008:1–3

  • Paajanen L, Viitanen H (1989) Decay fungi in Finnish houses on the basis of inspected samples from 1978 to 1988. International Research Group on Wood Preservation Document, IRG/WP/1401:1–4

  • Palfreyman JW, Low G (2002) Studies of the domestic dry rot fungus Serpula lacrymans with relevance to the management of decay in buildings. Res Report. Historical Society of Scotland, Edinburgh

  • Palfreyman JW, Glancy H, Button D, Bruce A, Vigrow A, Score A, King B (1988) Use of immunoblotting for the analysis of wood decay basidiomycetes. International Research Group on Wood Preservation Document, IRG/WP/2307:1–8

  • Palfreyman JW, Vigrow A, Button D, Hegarty B, King B (1991) The use of molecular methods to identify wood decay organisms. 1. The electrophoretic analysis of Serpula lacrymans. Wood Protect 1:15–22

    Google Scholar 

  • Palfreyman JW, Phillips EM, Staines HJ (1996) The effect of calcium ion concentration on the growth and decay capacity of Serpula lacrymans (Schumacher ex Fr.) Gray and Coniophora puteana (Schumacher ex Fr.) Karst. Holzforschung 50:3–8

    CAS  Google Scholar 

  • Palfreyman JW, Gartland JS, Sturrock CJ, Lester D, White NA, Low GA, Bech-Andersen J, Cooke DEL (2003) The relationship between “wild” and “building” isolates of the dry rot fungus Serpula lacrymans. FEMS Microbiol Lett 228:281–286

    PubMed  CAS  Google Scholar 

  • Palmer JG, Eslyn WE (1980) Monographic information on Serpula (Poria) incrassata. International Research Group on Wood Preservation Document, IRG/WP/160:1–61

  • Paul O (1990) Hausschwammbekämpfung mit Heissluft. Bautenschutz Basanierung 1:12–15

    Google Scholar 

  • Peyretaillade E, Biderre C, Peyret P, Duffieux F, Méténier G, Gouy M, Michot B, Vivarès CP (1998) Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rDNA reduced to the universal core. Nucleic Acids Res 26:3513–3520

    PubMed  CAS  Google Scholar 

  • Phillips-Laing EM, Staines HJ, Palfreyman JW (2003) The isolation of specific bio-control agents for the dry rot fungus Serpula lacrymans. Holzforschung 57:574–578

    CAS  Google Scholar 

  • Potyralska A, Schmidt O, Moreth U, Łakomy P, Siwecki R (2002) rDNA-ITS sequence of Armillaria species and a specific primer for A. mellea. For Genet 9:119–123

    CAS  Google Scholar 

  • Råberg U, Högberg N, Land CJ (2004) Identification of brown-rot fungi on wood in above ground conditions by PCR, T-RFLP and sequencing. International Research Group on Wood Preservation Document, IRG/WP/10512:1–6

  • Rattray P, McGill G, Clarke DD (1996) Antagonistic effects of a range of fungi to Serpula lacrymans. International Research Group on Wood Preservation Document, IRG/NP/10156:1–11

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Its biology and ecology. Wiley, Chichester

    Google Scholar 

  • Ridout B (2000) Timber decay in buildings. The conservation approach to treatment. E & FN Spon, London

    Google Scholar 

  • Rypáček V (1966) Biologie holzzerstörender Pilze. Fischer, Jena

    Google Scholar 

  • Ryvarden L, Gilbertson RL (1993/1994) European polypores. 1. Synopsis Fung 6:1–387

  • Ryvarden L, Gilbertson RL (1994) European polypores. 2. Synopsis Fung 7:394–743

  • Sallmann U (2005) Bekämpfender Holzschutz. In: Müller J (ed) Holzschutz im Hochbau. Fraunhofer IRB, Stuttgart, pp 265–303

    Google Scholar 

  • Savory JG (1964) Dry rot – a re-appraisal. Rec Br Wood Preserv Assoc 1964:69–76

    Google Scholar 

  • Schmidt O (2000) Molecular methods for the characterization and identification of the dry rot fungus Serpula lacrymans. Holzforschung 54:221–228

    CAS  Google Scholar 

  • Schmidt O (2006) Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schmidt O, Huckfeldt T (2005) Gebäudepilze. In: Müller J (ed) Holzschutz im Hochbau. Fraunhofer IRB, Stuttgart, pp 44–72

    Google Scholar 

  • Schmidt O, Kallow W (2005) Differentiation of indoor wood decay fungi with MALDI-TOF mass spectrometry. Holzforschung 59:374–377

    CAS  Google Scholar 

  • Schmidt O, Kebernik U (1989) Characterization and identification of the dry rot fungus Serpula lacrymans by polyacrylamide gel electrophoresis. Holzforschung 43:195–198

    CAS  Google Scholar 

  • Schmidt O, Moreth U (1995) Detection and differentiation of Poria indoor brown-rot fungi by polyacrylamide gel electrophoresis. Holzforschung 49:11–14

    CAS  Google Scholar 

  • Schmidt O, Moreth U (1996) Biological characterization of Poria indoor brown-rot fungi. Holzforschung 50:105–110

    CAS  Google Scholar 

  • Schmidt O, Moreth U (1998) Characterization of indoor rot fungi by RAPD analysis. Holzforschung 52:229–233

    CAS  Article  Google Scholar 

  • Schmidt O, Moreth U (1999) Identification of the dry rot fungus, Serpula lacrymans, and the wild merulius, S. himantioides, by amplified ribosomal DNA restriction analysis (ARDRA). Holzforschung 53:123–128

    CAS  Google Scholar 

  • Schmidt O, Moreth U (2000) Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lacrymans. Mycol Res 104:69–72

    CAS  Google Scholar 

  • Schmidt O, Moreth U (2002/2003) Data bank of rDNA-ITS sequences from building-rot fungi for their identification. Wood Sci Technol 36:429–433 (revision in Wood Sci Technol 37:161–163)

    Google Scholar 

  • Schmidt O, Moreth U (2003) Molecular identity of species and isolates of internal pore fungi Antrodia spp. and Oligoporus placenta. Holzforschung 57:120–126

    CAS  Google Scholar 

  • Schmidt O, Moreth-Kebernik U (1990) Biological and toxicant studies with the dry rot fungus Serpula lacrymans and new strains obtained by breeding. Holzforschung 44:1–6

    CAS  Article  Google Scholar 

  • Schmidt O, Moreth-Kebernik U (1991a) A simple method for producing basidiomes of Serpula lacrymans in culture. Mycol Res 95:375–376

    Google Scholar 

  • Schmidt O, Moreth-Kebernik U (1991b) Monokaryon pairings of the dry rot fungus Serpula lacrymans. Mycol Res 95:1382–1386

    Google Scholar 

  • Schmidt O, Grimm K, Moreth U (2002/2003) Molecular identity of species and isolates of the Coniophora cellar fungi. Holzforschung 56:563–571 (Addendum in Holzforschung 57:228)

    Google Scholar 

  • Schultze-Dewitz G (1985) Holzschädigende Organismen in der Altbausubstanz. Bauztg 39:565–566

    Google Scholar 

  • Schultze-Dewitz G (1990) Die Holzschädigung in der Altbausubstanz einiger brandenburgischer Kreise. Holz-Zbl 116:1131

    Google Scholar 

  • Schulze S, Bahnweg G (1998) Identification of the genus Armillaria (Fr.: Fr. Staude and Heterobasidion annosum (Fr.) Bref. in Norway spruce (Picea abies (L) Karst.) and determination of clonal distribution of A. ostoyae-genotypes by molecular methods. Forstwiss Cbl 117:98–114

    CAS  Google Scholar 

  • Schwarze FWMR, Londsdale D, Fink S (1997) An overview of wood degradation patterns and their implications for tree hazard assessment. Arboricult J 21:1–32

    Google Scholar 

  • Seehann G (1984) Monographic card on Antrodia serialis. International Research Group on Wood Preservation Document, IRG/WP/1145:1–11

  • Selosse M-C, Costa G, Battista CD, Le Tacon F, Martin F (1996) Meiotic segregation and recombination of the intergenic spacer of the ribosomal DNA in the ectomycorrhizal basidiomycete Laccaria bicolor. Curr Genet 30:332–337

    PubMed  CAS  Google Scholar 

  • Shimokawa T, Nakamura M, Hayashi N, Ishihara M (2004) Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction. Holzforschung 58:305–310

    CAS  Google Scholar 

  • Siau JF (1984) Transport processes in wood. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Silverborg SB (1953) Fungi associated with the decay of wooden buildings in New York State. Phytopathology 43:20–22

    Google Scholar 

  • Stalpers JA (1978) Identification of wood-inhabiting Aphyllophorales in pure culture. Stud Mycol 16. Centraalbureau Schimmelcultures, Baarn

    Google Scholar 

  • Stephan I, Leithoff H, Peek R-D (1996) Microbial conversion of wood treated with salt preservatives. Mater Org 30:179–199

    CAS  Google Scholar 

  • Steinfurth A (2006) Possibilities and limitations of thermal control of dry rot (Serpula lacrymans). In: Int Conf Wood-Destroying Organisms in Focus – Alternative Measures for Preservation of Historic Buildings. Detmold, Germany, pp 62–63

    Google Scholar 

  • Sutter H-P (2003) Holzschädlinge an Kulturgütern erkennen und bekämpfen, 4th edn. Haupt, Bern

    Google Scholar 

  • Theden G (1941) Untersuchungen über die Feuchtigkeitsansprüche der wichtigsten in Gebäuden auftretenden holzzerstörenden Pilze. Angew Bot 23:189–253

    CAS  Google Scholar 

  • Theden G (1972) Das Absterben holzzerstörender Pilze in trockenem Holz. Mater Org 7:1–10

    Google Scholar 

  • Theodore ML, Stevenson TW, Johnson GC, Thornton JD, Lawrie AC (1995) Comparison of Serpula lacrymans isolates using RAPD PCR. Mycol Res 99:447–450

    CAS  Article  Google Scholar 

  • Thornton JD (1989) The restricted distribution of Serpula lacrymans in Australian buildings. International Research Group on Wood Preservation Document, IRG/WP/1382:1–12

  • Toft L (1993) Immunological identification in vitro of the dry rot fungus Serpula lacrymans. Mycol Res 97:290–292

    Google Scholar 

  • Unger A, Schniewind AP, Unger W (2001) Conservation of wood artifacts. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    CAS  Google Scholar 

  • Verrall AF (1968) Poria incrassata rot: prevention and control in buildings. USDA Forest Serv Tech Bull 1385

  • Vigrow A, Palfreyman JW, King B (1991a) On the identity of certain isolates of Serpula lacrymans. Holzforsch 45:153–154

    Google Scholar 

  • Vigrow A, King B, Palfreyman JW (1991b) Studies of Serpula lacrymans mycelial antigens by Western blotting techniques. Mycol Res 95:1423–1428

    CAS  Google Scholar 

  • Viikari L, Ritschkoff A-C (1992) Prevention of brown-rot decay by chelators. IRG/WP/1540:1–7

  • Viitanen H, Ritschkoff A-C (1991) Brown rot decay in wooden constructions. Effect of temperature, humidity and moisture. Swed Univ Agric Sci Dept For Prod 222

  • Wälchli O (1980) Der echte Hausschwamm-Erfahrungen über Ursachen und Wirkungen seines Auftretens. Holz Roh-Werkstoff 38:169–174

    Google Scholar 

  • Wälchli O (1991) Occurrence and control of Serpula lacrymans in Switzerland. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 131–145

    Google Scholar 

  • Ważny H, Czajnik M (1963) On the occurrence of indoor wood-decay fungi in Poland (Polish). Fol For Polon 5:5–17

    Google Scholar 

  • Ważny J, Brodziak L (1981) Daedalea quercina (L.) ex Fr. In: Cockcroft R (ed) Some wood-destroying basidiomycetes. International Research Group on Wood Preservation Document, Boroko, Papua New Guinea, pp 47–53

    Google Scholar 

  • Weigl J, Ziegler H (1960) Wassergehalt und Stoffleitung bei Merulius lacrimans (Wulf.) Fr. Arch Mikrobiol 37:124–133

    Google Scholar 

  • White NA, Dehal PK, Duncan JM, Williams NA, Gartland JS, Palfreyman JW, Cooke DEL (2001) Molecular analysis of intraspecific variation between building and “wild” isolates of the dry rot fungus Serpula lacrymans and their relatedness to S. himantioides. Mycol Res 105:447–452

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Sninisky JJ, White TJ (eds) PCR protocols. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Zabel RA, Morrell JJ (1992) Wood microbiology. Decay and its prevention. Academic Press, San Diego

    Google Scholar 

  • Zaremski A, Ducousso M, Prin Y, Fouquet D (1999) Molecular characterization of wood-decaying fungi. Bois For Trop, Special Issue:76–81

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Schmidt.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11557-007-0545-x

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, O. Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol Progress 6, 261–279 (2007). https://doi.org/10.1007/s11557-007-0534-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-007-0534-0

Keywords

  • Timber
  • Internal Transcribe Spacer
  • Amplify Fragment Length Polymorphism
  • Fruit Body
  • Fibre Saturation Point