Skip to main content
Log in

Phylogenetic relationships among species of Leotia (Leotiales) based on ITS and RPB2 sequences

  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Thirty-three collections of Leotia were used to investigate inter-and infra-specific relationships in the genus. Collections were obtained from various parts of the world and represent the ascomatal color forms typical in species of the genus. The ITS rDNA and a variable region of the RNA polymerase II (RPB2) gene were sequenced and analyzed using parsimony and maximum likelihood methods. Although ITS and RPB2 tree topologies differed in regard to the position of two clades of L. lubrica and L. atrovirens, no significant conflict between ITS and RPB2 data or trees was found as determined by the partition homogeneity test. RPB2 sequences in general gave results comparable to ITS; the RPB2 sequences were more easily aligned. Phylogenetic analysis of the sequence data indicates that L. viscosa, L. lubrica and L. atrovirens are polyphyletic species. This suggests that ascomatal color in fresh specimens is not a reliable character alone for determining species in this group. Four major well-supported groups were found; these do not fully correspond to the commonly recognized species. Stipe color, in both fresh and dry condition, seems to correlate with the major recognized groups but features of the ascospores, asci and paraphyses prove too variable to be informative. The most basal group of Leotia species, identified as L. atrovirens, differ from all others by having stipes without gel tissue in their outer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arpin N (1969) Les caroténoïdes des Discomycètes: essai chimiotaxinomique. — Bulletin Mensuel de la Société Linnéenne de Lyon 38(suppl.): 1–169.

    Google Scholar 

  • Baral, H-O (1999) Vital versus herbarium taxonomy: morphological differences between living and dead cells of ascomycetes and their taxonomic implications. — Mycotaxon 44: 333–390

    Google Scholar 

  • Baral H-O (1999) Ombrophila hemiamyloidea, an aquatic discomycete. — Mycologia Bavarica 3: 50–63.

    Google Scholar 

  • Baum DA, Sytsma KJ, Hoch PC (1994) A phylogenetic analysis of Epilobium (Onagraceae) based on nuclear ribosomal DNA sequences. — Systematic Botany 19: 363–388.

    Google Scholar 

  • Benedix EH (1955) Die Ascomycetengattung Leotia Hill. emend. Bx. und ihre Vertreter in Mitteleuropa. — Feddes Repertorium Specierum Novarum Regni Vegetabilis 58: 198–208.

    Google Scholar 

  • Durand EJ (1908) The Geoglossaceae of North America. — Annales Mycologici 6: 387–477.

    Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of incongruence. — Cladistics 10: 315–319.

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. — Journal of Molecular Evolution 17: 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. — Evolution 39: 783–791.

    Google Scholar 

  • Gernandt DS, Platt JL, Stone JK, Spatafora JW, Holst-Jensen A, Hamelin RC, Kohn LM (2001) Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences. — Mycologia 93: 915–933.

    CAS  Google Scholar 

  • Goldman N (1993a) Simple diagnostic statistical test of models of DNA substitution. — Journal of Molecular Evolution 37: 650–661.

    CAS  PubMed  Google Scholar 

  • Goldman N (1993b) Statistical tests of models of DNA substitution. — Journal of Molecular Evolution 36: 182–198.

    Article  CAS  PubMed  Google Scholar 

  • Grund DW, Harrison KA (1967) Nova Scotian fungi: Geoglossaceae. — Canadian Journal of Botany 45: 1625–1641.

    Google Scholar 

  • Hansen K, Pfister DH, Hibbett DS (1999) Phylogenetic relationships among species of Phillipsia inferred from molecular and morphological data. — Mycologia 91: 299–314.

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. — Journal of Molecular Evolution 22: 160–174.

    CAS  PubMed  Google Scholar 

  • Imai S (1936) Studies on the Geoglossaceae of Japan. II. The genus Leotia. — Botanical Magazine. Tokyo 50: 9–16.

    Google Scholar 

  • Imai S (1941) Geoglossaceae Japoniae. — Journal of the Faculty of Agriculture, Hokkaido Imperial University 45: 155–264.

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In Munro HN, Allison JB (eds) Mammalian protein metabolism, pp. 21–132. Academic Press New York.

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. — Journal of Molecular Evolution 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. — Journal of Molecular Evolution 29: 170–179.

    Article  CAS  PubMed  Google Scholar 

  • Korf RP (1958) Japanese Discomycete Notes I–VIII. — Science Reports of the Yolohama National University, Section II. Biological and Geological Sciences 7: 7–35.

    Google Scholar 

  • Korf RP (1973) Discomycetes and Tuberales. In Ainsworth GC, Sparrow FK, Sussmann AS (eds) The fungi-An advanced treatise, 4A, pp 249–319. Academic press New York and London.

    Google Scholar 

  • Korf RP, Iturriaga T, Lizon P (1996) (1245) Proposal to conserve the family name Helotiaceae (Fungi). — Taxon 45: 683–684.

    Google Scholar 

  • Korf RP, Lizon P (2000) Validation of Nannfeldt’s ordinal name Helotiales. — Mycotaxon 75: 501–502.

    Google Scholar 

  • Korf RP, Lizon P (2001) The status of the ordinal name Leotiales. — Czech Mycology 52: 255–257.

    Google Scholar 

  • Landvik S, Shailer NFJ, Eriksson OE (1996) SSU rDNA sequence support for a close relationship between the Elaphomycetales and the Eurotiales and Onygenales. — Mycoscience 37: 237–241.

    CAS  Google Scholar 

  • Landvik S, Kristiansen R, Schumacher T (1998) Phylogenetic and structural studies in the Thelebolaceae (Ascomycota). — Mycoscience 39: 49–56.

    Google Scholar 

  • Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. — Journal of Molecular Evolution 20: 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. — Molecular Biology and Evolution 16: 1799–1808.

    CAS  PubMed  Google Scholar 

  • Lizon P, Korf RP, Iturriaga T (1998) A preliminary discomycete flora of Macaronesia — Part 18, Leotiales. — Mycotaxon 67: 73–83.

    Google Scholar 

  • Mains EB (1956) North American species of the Geoglossaceae. Tribe Cudonieae. — Mycologia 48: 694–710.

    Google Scholar 

  • Moore, EJ (1965) Ontogeny of gelatinous fungi. — Mycologia 57: 114–130.

    Google Scholar 

  • Nannfeldt JA (1942) The Geoglossaceae of Sweden (with regard also to the surrounding countries). — Arkiv för Botanik Utgivet av K. Svenska Vetenskapsakademien 30A: 1–67.

    Google Scholar 

  • Otani Y (1982) Cup fungi collected in Nepal 1. In Otani Y (ed) Reports on the cryptogamic study in Nepal, pp. 75–91. The National Science Museum, Tokyo.

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. — Bioinformatics 14: 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. — Journal of Theoretical Biology 142: 485–501.

    CAS  PubMed  Google Scholar 

  • Sanderson MJ (1998) Estimating rate and time in molecular phylogenies: Beyond the molecular clock? In Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing, pp 242–264. Kluwer Academic Press.

  • Swofford DL (2001) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0b6. Sinauer Associates Sunderland, Massachusetts, USA.

    Google Scholar 

  • Tai FL (1944) Studies in the Geoglossaceae of Yunnan. — Lloydia 7: 147–162.

    Google Scholar 

  • Tavare S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. — Lectures on Mathematics in the Life Sciences 17: 57–86.

    Google Scholar 

  • Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. — Evolution 37: 221–244.

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. — Nucleic Acids Research 25: 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  • Velenovsky J (1934) Monographia discomycetum bohemiae, Pragae.

  • Verkley GJM (1994) Ultrastructure of the ascus apical apparatus in Leotia lubrica and some Geoglossaceae (Leotiales, Ascomycotina). — Persoonia 15: 405–430.

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White T (eds) PCR protocols, pp 315–322. Academic Press, San Diego.

    Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. — Journal of Molecular Evolution 39: 306–314.

    CAS  PubMed  Google Scholar 

  • Zhang N, Blackwell M. (2001) Molecular phylogeny of dogwood anthracnose fungus (Discula destructive) and the Diaporthales. — Mycologia 93: 355–365.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald H. Pfister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Pfister, D.H. Phylogenetic relationships among species of Leotia (Leotiales) based on ITS and RPB2 sequences. Mycol Progress 3, 237–246 (2004). https://doi.org/10.1007/s11557-006-0094-8

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0094-8

Keywords

Navigation