Skip to main content
Log in

The distribution of ascus types and photobiontal selection in Lecanoromycetes (Ascomycota) against the background of a revised SSU nrDNA phylogeny

  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Within the last decade, molecular methods have revealed the relationships in many groups of lichenized Ascomycetes. However, the published phylogenies were often contradictory with respect to higher taxonomic levels. To achieve a more convincing overall picture of phylogenetic relationships of and within the Lecanoromycetes, we set up an alignment of all publicly available SSU nrDNA sequences of the Pezizomycotina, discarded those of insufficient quality, and added 21 newly obtained sequences representing groups that were not or under-represented so far. The alignment of 635 taxa and a subset of 166 Lecanoromycetes were analysed with different phylogenetic algorithms. The best phylogenetic trees, with respect to length, resolution, and support, were obtained with the Parsimony Ratchet method and DNAPARS (Phylip). According to these results, the Lecanoromycetes were subdivided into eight monophyletic clades representing the following orders: Acarosporales ad. int., Agyriales, Baeomycetales, Gyalectales, Icmadophilales ad. int., Lecanorales, Ostropales, and Pertusariales. These clades are distributed in two monophyletic groups corresponding to the two different types of ascomatal ontogeny. The taxa of the Lecanorales-clade differ from the other orders by the absence of a primary cyanobiont and of phycobionts of the genera Coccomyxa and Trentepohlia, in combination with the presence of an amyloid reaction of the ascus tips (lacking amyloid flanks). The Lecanorales-clade is subdivided into nine groups which are treated here at the level of suborders: Lecideineae, Teloschistineae, Physciineae, Bacidiineae ad int., Sphaerophorineae ad int., Rhizocarpineae ad int., Psorineae ad int., Cladoniineae, and Lecanorineae. The amyloid reaction pattern of the ascus apex correlates with this grouping at suborder rank. Peltigerales were excluded from the Lecanorales but included in the Lecanoromycetes based on morpho-anatomical features. The Lichinales were excluded from the Lecanoromycetes, while the position of the Umbilicariaceae remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald JK, Mort ME, Crawford DJ (2003) Bayesian inference of phylogeny: a non-technical primer. — Taxon 52(2): 187–191.

    Google Scholar 

  • Archibald PA (1975) Trebouxia DePuymaly (Chlorophyceae, Chlorococcales) and Pseudotrebouxia gen. nov. (Chlorophyceae, Chlorosarcinales). — Phycologia 14: 125–137.

    Google Scholar 

  • Articus K, Mattsson JE, Tibell L, Grube M, Wedin M (2002) Ribosomal DNA and beta-tubulin data do not support the separation of the lichens Usnea florida and U. subfloridana as distinct species. — Mycological Research 106: 412–418.

    Article  CAS  Google Scholar 

  • Arup U, Grube M (1999) Where does Lecanora demissa (Ascomycota, Lecanorales) belong? — Lichenologist 31: 419–430.

    Google Scholar 

  • Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. — Lichenologist 31: 501–510.

    Google Scholar 

  • Beck A (2002a) Selektivität der Symbionten schwermetalltoleranter Flechten. Inaugural-Dissertation, Ludwig-Maximilians-Universität München, 196 pp.

  • Beck A (2002b) Photobionts: diversity and selectivity in lichen symbioses. — International Lichenological Newsletter 35: 18–24.

    Google Scholar 

  • Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. — New Phytologist 139(4): 709–720.

    Article  CAS  Google Scholar 

  • Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. — Mycological Research 104: 53–60.

    Article  CAS  Google Scholar 

  • Bhattacharya D, Friedl T, Helms G (2002) Vertical evolution and intragenic spread of lichen-fungal group I introns. — Journal of Molecular Evolution 55(1): 74–84.

    Article  CAS  PubMed  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal Molecular Systematics. — Annual Review of Ecology and Systematics 22: 525–564.

    Article  Google Scholar 

  • Ekman S, Tønsberg T (2002) Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. — Mycological Research 106: 1262–1276.

    Article  Google Scholar 

  • Ekman S, Wedin M (2000) The phylogeny of the families Lecanoraceae and Bacidiaceae (Lichenized Ascomycota) inferred from nuclear SSU rDNA sequences. — Plant Biology 2(3): 350–360.

    Article  CAS  Google Scholar 

  • Eriksson OE, Baral H-O, Currah RS, Hansen K, Kurtzman CP, Rambold G, Laessøe T (2003) Outline of Ascomycota-2003. — Myconet 9: 1–89.

    Google Scholar 

  • Eriksson OE, Strand A (1995) Relationships of the genera Nephroma, Peltigera and Solorina (Peltigerales, Ascomycota) inferred from 18S rDNA sequences. — Systema Ascomycetum 14: 33–39.

    Google Scholar 

  • Felsenstein J (1995) PHYLIP (Phylogeny Inference Package). Version 3.57c. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum (Cop.) Ant. — Lichenologist 19: 183–191.

    Google Scholar 

  • Friedl T, Gärtner G (1988) Trebouxia (Pleurastrales, Chlorophyta) as a phycobiont in the lichen genus Diploschistes. — Archiv für Protistenkunde 135: 147–158.

    Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. — Science 268: 1492–1495.

    CAS  PubMed  Google Scholar 

  • Gargas A, Taylor JW (1995) Phylogeny of Discomycetes and early radiations of the apothecial Ascomycotina inferred from SSU rDNA sequence data. — Experimental Mycology 19: 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Gärtner, G. (1985) Die Gattung Trebouxia Puymaly (Chlorellales, Chlorophyceae). — Archiv für Hydrobiologie, Suppl. 71: 495–548.

    Google Scholar 

  • Grube M, de los Rios A (2001) Observations on Biatoropsis usnearum, a lichenicolous heterobasidiomycete, and other gall-forming lichenicolous fungi, using different microscopical techniques. — Mycological Research 105: 116–1122.

    Google Scholar 

  • Grube M, Winka K (2002) Progress in understanding the evolution and classification of lichenized ascomycetes. — Mycologist 16: 67–76.

    Article  Google Scholar 

  • Hafellner J, Hertel H, Rambold G, Timdal E (1993) A new outline of the Lecanorales. Handout distributed at the First International Workshop on Ascomycete Systematics. Paris 1993

  • Helms G, Friedl T, Rambold G (2003) Phylogenetic relationships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters. — Mycologia 95: 1078–1099.

    CAS  Google Scholar 

  • Henssen A (1970) Die Apothecienentwicklung bei Umbilicaria Hoffm. emend. Frey. In Anonymous (ed) Flechtensymposium 1969-Vorträge aus dem Gesamtgebiet der Botanik, N.F. 4, 103–126. Deutsche Botanische Gesellschaft.

  • Henssen A, Jahns HM (1974) Lichenes. Eine Einführung in die Flechtenkunde. G. Thieme Verlag, Stuttgart.

    Google Scholar 

  • Hildreth KC, Ahmadjian V (1981) A study of Trebouxia and Pseudotrebouxia isolates from different lichens. — Lichenologist 13: 65–86.

    Google Scholar 

  • Honegger R (1996) Morphogenesis. In Nash III, TH (ed) Lichen biology, pp. 65–87. Cambridge University Press, Cambridge.

    Google Scholar 

  • Horovitz I (1999) A report on “One Day Symposium on Numerical Cladistics”. — Cladistics-the International Journal of the Willi Hennig Society 15(2): 177–182.

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. — Bioinformatics 17(8): 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Kainz C, Rambold G (2004) A phylogenetic study on the lichen genus Protoblastenia (Lecanorales, Psoraceae) in Central Europe. — Bibliotheca Lichenologica 88: 267–300.

    Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. — Molecular Phylogenetics and Evolution 25(1): 138–156.

    Article  CAS  PubMed  Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. — Molecular Biology and Evolution 16(6): 750–759.

    CAS  Google Scholar 

  • Letrouit-Galinou M-A (1966) Recherches sur l'ontogénie et l'anatomie comparées des apothécies des quelques discolichens. — Revue Bryologique et Lichénologique 34(3–4): 413–588.

    Google Scholar 

  • Letrouit-Galinou M-A (1968) The apothecia of the discolichens. — Bryologist 71(4): 297–327.

    Google Scholar 

  • Lumbsch HT (1997) Systematic studies in the suborder Agyriineae (Lecanorales). — Journal of the Hattori Botanical Laboratory 83: 1–73.

    Google Scholar 

  • Lumbsch HT, Lunke T, Feige GB, Huneck S (1995) Anamylopsoraceae — a new family of lichenized ascomycetes with stipitate apothecia (Lecanorales: Agyriineae). — Plant Systematics and Evolution 198: 275–286.

    Article  Google Scholar 

  • Lumbsch HT, Schmitt I, Döring H, Wedin M (2001) Molecular systematics supports the recognition of an additional order of Ascomycota: the Agyriales. — Mycological Research 105: 16–23.

    Google Scholar 

  • Lumbsch HT, Schmitt I, Messuti MI (2001) Utility of nuclear SSU and LSU rDNA data sets to discover the ordinal placement of the Coccotremataceae (Ascomycota). — Organisms Diversity & Evolution 1(2): 99–112.

    Article  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. — Nature 411: 937–940.

    Article  CAS  PubMed  Google Scholar 

  • Maier W, Begerow D, Weiss M, Oberwinkler F (2003) Phylogeny of the rust fungi: an approach using nuclear large subunit ribosomal DNA sequences. — Canadian Journal of Botany 81(1): 12–23.

    Article  CAS  Google Scholar 

  • Mattsson JE, Wedin M (1999) Phylogeny of the Parmeliaceae-DNA data versus morphological data. — Lichenologist 30: 463–472.

    Google Scholar 

  • Meier, FA, Scherrer S, Honegger R (2002) Faecel pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. — Biological Journal of the Linnean Society 76: 259–268.

    Article  Google Scholar 

  • Peršoh D, Rambold G (2002) Phacopsis-a lichenicolous genus of the family Parmeliaceae. — Mycological Progress 1(1): 43–56.

    Google Scholar 

  • Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. — American Journal of Botany 88: 1490–1498.

    CAS  Google Scholar 

  • Platt JL, Spatafora JW (1999) A re-examination of generic concepts of baeomycetoid lichens based on phylogenetic analyses of nuclear SSU and LSU ribosomal DNA. — Lichenologist 31(5): 409–418.

    Google Scholar 

  • Platt JL, Spatafora JW (2000) Evolutionary relationships of nonsexual lichenized fungi: molecular phylogenetic hypotheses for the genara Siphula and Thamnolia from SSU and LSU rDNA. — Mycologia 92(3): 475–487.

    CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. — Bioinformatics 14(9): 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Rambold G, Hagedorn G (1998) The distribution of selected diagnostic characters in the Lecanorales. — Lichenologist 30: 473–487.

    Google Scholar 

  • Rambold G, Triebel D (1992) The Inter-Lecanoralean associations. — Bibliotheca Lichenologica 48: 1–201.

    Google Scholar 

  • Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. — Journal of Theoretical Biology 142(4): 485–501.

    CAS  PubMed  Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized ascomycetes) along a transect of the Antarctic peninsula. — Molecular Biology and Evolution 19(8): 1209–1217.

    CAS  PubMed  Google Scholar 

  • Schmitt I, Messuti MI, Feige GB, Lumbsch HT (2001) Molecular data support rejection of the generic concept in the Coccotremataceae (Ascomycota). — Lichenologist 33: 315–321.

    Google Scholar 

  • Schultz M, Arendholz W-R, Büdel B (2001) Origin and evolution of the lichenized ascomycete order Lichinales: monophyly and systematic relationship inferred from ascus, fruiting body and SSU rDNA evolution. — Plant Biology 3: 116–123.

    Article  CAS  Google Scholar 

  • Sikes DS, Lewis PO (2001) PAUPRat: A tool to implement Parsimony Ratchet searches using PAUP*. (http://viceroy.eeb.uconn.edu/paupratweb/pauprat.htm).

  • Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomycetes: The Clavicipitales-Hypocreales connection. — Mycologia 85: 912–922.

    CAS  Google Scholar 

  • Stenroos S, Myllys L, Thell A, Hyvönen J (2002) Phylogenetic hypotheses: Cladoniaceae, Stereocaulaceae, Baeomycetaceae, and Icmadophilaceae revisited. — Mycological Progress 1(3): 267–282.

    Google Scholar 

  • Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. — American Journal of Botany 85(11): 1548–1559.

    CAS  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologies. — Molecular Biology and Evolution 13: 964–969.

    CAS  Google Scholar 

  • Swofford DL (2001) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b8. Sinauer Associations, Sunderland, Massachusetts.

    Google Scholar 

  • Swofford DL, Begle DP (1993) PAUP. Phylogenetic Analysis Using Parsimony. User's Manual. Version 3.1. Sinauer Associations, Sunderland, Massachusetts.

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. — Molecular Biology and Evolution 10: 512–526.

    CAS  PubMed  Google Scholar 

  • Tehler A, Farris JS, Lipscomb DL, Kallersjo M (2000) Phylogenetic analyses of the fungi based on large rDNA data sets. — Mycologia 92(3): 459–474.

    Google Scholar 

  • Tehler A, Little DP, Farris JS (2003) The full-length phylogenetic tree from 1551 ribosomal sequences of chitinous fungi. — Mycological Research 107(8): 901–916.

    Article  CAS  PubMed  Google Scholar 

  • Timdal E (1991) Anamylopsora, a new genus in the Lecideaceae. — Mycotaxon 42: 249–254.

    Google Scholar 

  • Tschermak-Woess E (1948) Über wenig bekannte und neue Flechtengonidien I. Chlorella ellipsoidea Gerneck, als neue Flechtenalge. — Österreichische Botanische Zeitschrift 95: 341–343.

    Google Scholar 

  • Tschermak-Woess E (1980) Asterochloris phycobiontica, gen. et spec. nov., der Phycobiont der Flechte Varicellaria carneonivea. — Plant Systematics and Evolution 135: 279–294.

    Article  Google Scholar 

  • Tschermak-Woess E (1985) Elliptochloris bilobata kein ganz seltener Phycobiont. — Herzogia 7: 105–116.

    Google Scholar 

  • Walker WF, Doolittle WF (1982) Nucleotide sequences of 5S ribosomal RNA from four oomycete and chytrid water molds. — Nucleic Acids Research 10(18): 5717–5721.

    CAS  PubMed  Google Scholar 

  • Wedin M, Baloch E, Grube M (2002) Parsimony analyses of mtSSU and nITS rDNA sequences reveal the natural relationships of the lichen families Physciaceae and Caliciaceae. — Taxon 51(4): 655–660.

    Google Scholar 

  • Wedin M, Döring H (1999) The phylogenetic relationship of the Sphaerophoraceae, Austropeltum and Neophyllis (lichenized Ascomycota) inferred by SSU rDNA sequences. — Mycological Research 103: 1131–1137.

    CAS  Google Scholar 

  • Wedin M, Döring H, Ekman S (2000) Molecular phylogeny of the lichen families Cladoniaceae, Sphaerophoraceae, and Stereocaulaceae (Lecanorales, Ascomycotina). — Lichenologist 32: 171–187.

    Google Scholar 

  • Wedin M, Döring H, Mattsson JE (1999) A multi-gene study of the phylogenetic relationships of the Parmeliaceae. — Mycological Research 103: 1185–1192.

    CAS  Google Scholar 

  • Wedin M, Döring H, Nordin A, Tibell L (2000) Small subunit rDNA phylogeny shows the lichen families Caliciaceae and Physciaceae (Lecanorales, Ascomycotina) to form a monophyletic group. — Canadian Journal of Botany 78(2): 246–254.

    Article  CAS  Google Scholar 

  • Wedin M, Tehler A, Gargas A (1998) Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. — Plant Systematics and Evolution 209(1–2): 75–83.

    Google Scholar 

  • Wedin M, Tibell L (1997) Phylogeny and evolution of Caliciaceae, Mycocaliciaceae, and Sphinctrinaceae (Ascomycota), with notes on the evolution of the prototunicate ascus. — Canadian Journal of Botany 75(1236–1242)

    Google Scholar 

  • Wiklund E, Wedin M (2003) The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. — Cladistics 19(5): 419–431.

    Article  Google Scholar 

  • Winka K, Ahlberg C, Eriksson OE (1998) Are there lichenized Ostropales? — Lichenologist 30: 455–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Peršoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peršoh, D., Beck, A. & Rambold, G. The distribution of ascus types and photobiontal selection in Lecanoromycetes (Ascomycota) against the background of a revised SSU nrDNA phylogeny. Mycol Progress 3, 103–121 (2004). https://doi.org/10.1007/s11557-006-0081-0

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0081-0

Keywords

Navigation