Skip to main content
Log in

Soil-borne Penicillium spp. and other microfungi as efficient degraders of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)

  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Soil microfungi belonging to the genera Aspergillus, Coniothyrium, Paecilomyces, Penicillium and Trichoderma, as well as wood-and litter-decomposing basidiomycetes, were able to degrade the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) co-metabolically, but were unable to utilize it as a sole carbon or nitrogen source. The most efficient RDX-degrading microfungi were characterized morphologically and by analysis of the ITS region of the ribosomal RNA gene cluster as Penicillium janczewskii and an unidentifiable Penicillium sp. with uniseriate phialides. Both species catalysed 80–100 % disappearance of RDX in a liquid defined medium. RDX degradation was inhibited by the presence of 30 mM NH4 + but not by 40 mM NO3 . In basidiomycetes but not Penicillium spp., RDX degradation was greatly reduced when biomass pregrown at 23 °C was incubated with RDX at 15 °C. Because of their production of copious conidial inoculum, simple growth requirements and ability to degrade RDX at reduced temperature, Penicillium spp. show promise for the bioremediation of RDX-contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtnich C, Sieglen U, Knackmuss H-J, Lenke H (1999) Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. — Environmental Toxicology and Chemistry 18: 2416–2423.

    Article  CAS  Google Scholar 

  • Akhavan J (1998) The Chemistry of Explosives. Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Axtell C, Johnston CG, Bumpus JA (2000) Bioremediation of soil contaminated with explosives at the Naval Weapons Station Yorktown. — Soil and Sediment Contamination 9: 537–548.

    CAS  Google Scholar 

  • Bayman P, Ritchey SD, Bennett JW (1995) Fungal interactions with the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). — Journal of Industrial Microbiology 15: 418–423.

    Article  CAS  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. — Applied and Environmental Microbiology 61: 1318–1322.

    CAS  PubMed  Google Scholar 

  • Boopathy R, Gurgas M, Ullian J, Manning JF (1998) Metabolism of explosive compounds by sulfate-reducing bacteria. — Current Microbiology 37: 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. — Soil Biology and Biochemistry 30: 1159–1167.

    Article  Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (1980) Compendium of Soil Fungi I. Academic Press, London.

    Google Scholar 

  • Etnier EL, Hartley WR (1990) Comparison of water quality criterion and lifetime health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). — Regulatory Pharmacology and Toxicology 11: 118–122.

    CAS  Google Scholar 

  • Fernando T, Aust SD (1991) Biodegradation of munition waste, TNT (2,4,6-trinitrotoluene), and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Phanerochaete chrysosporium. In Tedder DW, Pohland FG (eds), Emerging Technologies in Hazardous Waste Management II, American Chemical Society Symposium Series 468: 214–232.

  • Fritsche W, Scheibner K, Herre A, Hofrichter M (2000) Fungal degradation of explosives: TNT and related nitroaromatic compounds. In Spain JC, Hughes JB, Knackmuss H-J (eds), Biodegradation of Nitroaromatic Compounds and Explosives, pp. 213–237. CRC Press, Boca Raton.

    Google Scholar 

  • Fulthorpe RR, Schofield LN (1999) A comparison of the ability of forest and agricultural soils to mineralize chlorinated aromatic compounds. — Biodegradation 10: 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial phase optimization for bioremediation of munition compound-contaminated soils. — Applied and Environmental Microbiology 59: 2171–2177.

    CAS  PubMed  Google Scholar 

  • Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel K-H (1994) Microbial degradation of explosives and related compounds. — Critical Reviews in Microbiology 20: 265–284.

    CAS  PubMed  Google Scholar 

  • Grove WB (1937) British Stem-and Leaf-Fungi (Coelomycetes) II. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Haas R, Schreiber I, von Löw E, Stork G (1990) Conception for the investigation of contaminated munition plants. 2. Investigation of the former RDX plants and filling stations. — Fresenius’ Journal of Analytical Chemistry 338: 41–45.

    CAS  Google Scholar 

  • Harrell-Bruder B, Hutchins KL (1995) Seizures caused by ingestion of composition C-4. — Annals of Emergency Medicine 26: 746–748.

    CAS  PubMed  Google Scholar 

  • Hawari J (2000) Biodegradation of RDX and HMX: from basic research to field application. In Spain JC, Hughes JB, Knackmuss H-J (eds), Biodegradation of Nitroaromatic Compounds and Explosives, pp. 277–310. CRC Press, Boca Raton.

    Google Scholar 

  • Hawari J, Halasz A, Paquet L, Zhou E, Spencer B, Ampleman G, Thiboutot S (1998) Characterization of metabolites in the biotransformation of 2,4,6-trinitrotoluene with anaerobic sludge: role of triaminotoluene. — Applied and Environmental Microbiology 64: 2200–2206.

    CAS  PubMed  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. — Applied Microbiology and Biotechnology 54: 605–618.

    Article  CAS  PubMed  Google Scholar 

  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. — Applied and Environmental Microbiology 66: 2652–2657.

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Song HG (2000) Simultaneous utilization of two different pathways in degradation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. — Journal of Microbiology 38: 250–254.

    CAS  Google Scholar 

  • Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). — Canadian Journal of Microbiology 46: 278–282.

    Article  CAS  PubMed  Google Scholar 

  • Köpcke B, Weber RWS, Anke H (2002) Galiellalactone and its biogenetic precursors as chemotaxonomic markers of the Sarcosomataceae (Ascomycota). — Phytochemistry 60: 709–714.

    Article  PubMed  Google Scholar 

  • Kuhn A (2001) Untersuchungen zur Etablierung eines biologischen Sanierungsverfahrens mit Pilzen für sprengstoffkontaminiertes Grundwasser. Ph.D. Thesis, University of Kaiserslautern, Germany.

    Google Scholar 

  • Levsen K, Mußmann P, Berger-Preiß E, Preiß A, Volmer D, Wünsch G (1993) Analysis of nitroaromatics and nitramines in ammunition waste water and in aqueous samples from former ammunition plants and other military sites. — Acta Hydrochimica et Hydrobiologica 21: 153–166.

    CAS  Google Scholar 

  • Luckner L (1997) Transportverhalten organischer Stoffe in Grundwasserleitern. In: Kreysa G, Wiesner, J (eds), Möglichkeiten und Grenzen der Reinigung kontaminierter Grundwässer. Resümee und Beiträge des 12. DECHEMA-Fachgesprächs Umweltschutz, pp. 101–111. DECHEMA, Weinheim, Germany. ISBN 3-926959-80-0.

    Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. — Applied and Environmental Microbiology 42: 817–823.

    CAS  PubMed  Google Scholar 

  • Michels J, Gottschalk G (1995) Pathway of 2,4,6-trinitrotoluene (TNT) degradation by Phanerochaete chrysosporium. In Spain JC (ed.), Biodegradation of Nitroaromatic Compounds, pp. 135–149. Plenum Press, New York.

    Google Scholar 

  • Muthumeenakshi S, Goldstein AL, Stewart A, Whipps JM (2001) Molecular studies on intraspecific diversity and phylogenetic position of Coniothyrium minitans. — Mycological Research 105: 1065–1074.

    CAS  Google Scholar 

  • Parker CE, Voyksner RD, Tondeur Y, Henion JD, Harvan DJ, Hass JR & Yinon J (1982) Analysis of explosives by liquid chromatography-negative ion chemical ionization mass spectrometry. — Journal of Forensic Sciences 27: 495–505.

    CAS  Google Scholar 

  • Parrish FW (1977) Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. — Applied and Environmental Microbiology 34: 232–233.

    CAS  PubMed  Google Scholar 

  • Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments. — Applied and Environmental Microbiology 62: 1120–1123.

    CAS  PubMed  Google Scholar 

  • Pitt JI (1979) The Genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. Academic Press, London.

    Google Scholar 

  • Preuss J, Haas R (1987) Die Standorte der Pulver-, Sprengstoff-, Kampf-und Nebelerzeugung im ehemaligen deutschen Reich. — Geographische Rundschau 39: 578–584.

    Google Scholar 

  • Raper KB, Thom C (1949) A Manual of the Penicillia. Bailliére, Tindall & Cox, London.

    Google Scholar 

  • Regan KM, Crawford RL (1994) Characterisation of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triazo-1,3,5-trinitrocyclohexane (RDX).–Biotechnology Letters 16: 1081–1086.

    Article  CAS  Google Scholar 

  • Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In Hutzinger O (ed.), The Handbook of Environmental Chemistry Vol. 3 Part G, pp. 196–225. Springer-Verlag, Berlin.

    Google Scholar 

  • Sacks W, Nürnberger T, Hahlbrock K, Scheel D (1995) Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. — Molecular and General Genetics 246: 45–55.

    CAS  PubMed  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. — Applied Microbiology and Biotechnology 47: 452–457.

    Article  CAS  PubMed  Google Scholar 

  • Sheremata TW, Hawari J (2000) Biodegradation of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. — Environmental Science and Technology 34: 3384–3388.

    CAS  Google Scholar 

  • Stahl JD, Aust SD (1995) Properties of a transplasma membrane redox system of Phanerochaete chrysosporium. — Archives of Biochemistry and Biophysics 320: 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Sublette KL, Ganapathy EV, Schwartz, S (1992) Degradation of munition wastes by Phanerochaete chrysosporium. — Applied Biochemistry and Biotechnology 34/35: 709–723.

    Google Scholar 

  • Sutton BC (1980) The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and Stromata. Commonwealth Mycological Institute, Kew, UK.

    Google Scholar 

  • Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D (2000) Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. — Applied and Environmental Microbiology 66: 2773–2782.

    CAS  PubMed  Google Scholar 

  • Urbanski T (1984) Chemistry and Technology of Explosives, Vol. 4. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Weber RWS, Ridderbusch DC, Anke H (2002) 2,4,6-Trinitrotoluene tolerance and biotransformation potential of microfungi isolated from TNT-contaminated soil. — Mycological Research 106: 336–344.

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds), PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Academic Press, San Diego.

    Google Scholar 

  • Xue SK, Iskandar IK, Selim HM (1995) Adsorption-desorption of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils. — Soil Science 160: 317–327.

    CAS  Google Scholar 

  • Yanze-Kontchou C, Gschwind N (1994) Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. — Applied and Environmental Microbiology 60: 4297–4302.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidrun Anke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, R.W.S., Kuhn, A. & Anke, H. Soil-borne Penicillium spp. and other microfungi as efficient degraders of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Mycol Progress 2, 83–93 (2003). https://doi.org/10.1007/s11557-006-0047-2

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0047-2

Keywords

Navigation