Skip to main content
Log in

The new genus Auritella from Africa and Australia (Inocybaceae, Agaricales): molecular systematics, taxonomy and historical biogeography

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Recent phylogenetic evidence strongly supports a monophyletic group of Afro-Australian mushroom species with phenotypic affinities to the genus Inocybe (Agaricales, Basidiomycota). In this study, this clade is proposed as the new genus Auritella. Seven species are fully documented with taxonomic descriptions and illustrations, four of which are described as new, including one sequestrate or truffle-like species. A key to genera and major clades of the Inocybaceae and a key to species of Auritella are provided. A maximum likelihood tree using rpb2 and nLSU-rDNA nucleotide sequences depicts the phylogenetic relationships of five of the seven species of the genus, of which the Australian taxa form a monophyletic group. An ancient split between Australian and African lineages is hypothesized using a molecular clock that dates back at least to the late Cretaceous (about 86 Ma). Taxonomic novelties: Auritella Matheny and Bougher; Auritella arenacolens (Cleland) Matheny and Bougher; Auritella aureoplumosa (Watling) Matheny; Auritella chamaecephala Matheny, O. K. Miller and Bougher; Auritella dolichocystis Matheny, Trappe and Bougher; Auritella erythroxa (De Seynes) Matheny; Auritella geoaustralis Matheny and Bougher; Auritella serpentinocystis Matheny, Trappe and Bougher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander I (1989) Systematics and ecology of ectomycorrhizal legumes. In: Stirton CH, Zarucchi JL (eds) Advances in legume biology. Monogr Syst Bot Mo Bot Gard 29:607–624

    Google Scholar 

  • Baldwin BG, Sanderson MJ (1998) Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci U S A 95:9402–9406

    Article  PubMed  CAS  Google Scholar 

  • Bougher NL, Syme K (1998) Fungi of southern Australia. University of Western Australia Press, Nedlans, Western Australia

    Google Scholar 

  • Bougher NL, Grove TS, Malajczuk N (1990) Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorous supply. New Phytol 114:77–85

    Article  CAS  Google Scholar 

  • Bougher NL, Fuhrer BA, Horak E (1994) Taxonomy and biogeography of Australian Rozites species mycorrhizal with Nothofagus and Myrtaceae. Aust Syst Bot 7:353–375

    Article  Google Scholar 

  • Briggs JC (2003) The biogeographic and tectonic history of India. J Biogeogr 30:381–388

    Article  Google Scholar 

  • Brundrett MC, Bougher NL, Dell B, Gove TS, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32, Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Ann Rev Ecolog Syst 22:525–564

    Article  Google Scholar 

  • Burbridge NT (1960) The phytogeography of the Australian region. Aust J Bot 8:75–209

    Article  Google Scholar 

  • Buyck B, Eysartier G (1999) Two new species of Inocybe (Cortinariaceae) from African woodland. Kew Bull 54:675–681

    Article  Google Scholar 

  • Castellano MA, Bougher NL (1994) Consideration of the taxonomy and biodiversity of Australian ectomycorrhizal fungi. Plant Soil 159:37–46

    Google Scholar 

  • Charles-Nelson E (1981) Phytogeography of southern Australia. In: Keast A (ed) The ecological biogeography of Australia. Junk, The Hague, pp 735–759

    Google Scholar 

  • Chaverri P, Castlebury LA, Overton BE, Samuels GJ (2003) Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia 95:1100–1140

    Article  Google Scholar 

  • Cleland JB (1933) Australian fungi: notes and descriptions, no. 9. Trans Proc R Soc S Aust 57:187–194

    Google Scholar 

  • Clémençon H (2004) Cytology and plectology of the Hymenomycetes. Bibl Mycol 199:iii–488

    Google Scholar 

  • De Seynes J (1897) Recherches pour servir à l’histoire naturelle et à la flore des champignons du Congo Français I. Massar et Cie, Paris

  • Desjardin DE, Wang Z, Binder M, Hibbett DS (2004) Sparassis cystidiosa sp. nov. from Thailand is described using morphological and molecular data. Mycologia 96:1010–1014

    Article  Google Scholar 

  • Donoghue MJ, Bell CD, Li J (2001) Phylogenetic patterns in northern hemisphere plant geography. Int J Plant Sci 162[6 Suppl]:S41–S52

    Article  Google Scholar 

  • Ducousso M, Bena G, Bourgeois C, Buyck B, Eysartier G, Vincelette M, Rabevohitra R, Randrihasipara L, Dreyfus B, Prin Y (2004) The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India–Madagascar separation, about 88 million years ago. Mol Ecol 13:231–236

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLiP (Phylogeny inference package) version 3.57. University of Washington, Seattle, USA

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer, Sunderland, Massachusetts, USA

    Google Scholar 

  • Francis AA, Bougher NL (2003) Historical and current perspectives in the systematics of Australian cortinarioid sequestrate (truffle-like) fungi. Australasian Mycologist 21:81–93

    Google Scholar 

  • Geml J, Geiser DM, Royse DJ (2004) Molecular evolution of Agaricus species based on ITS and LSU rDNA sequences. Mycol Prog 3:157–176

    Article  Google Scholar 

  • Glen M, Tommerup IC, Bougher NL, O’Brien PA (2001) Interspecific and intraspecific variation of ectomycorrhizal fungi associated with Eucalyptusecosystems as revealed by ribosomal DNA PCR-RFLP. Mycol Res 105:843–858

    Article  CAS  Google Scholar 

  • Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and illusion of precision. Trends Genet 20:80–86

    Article  PubMed  CAS  Google Scholar 

  • Green JW (1964) Discontinuous and presumed vicarious plant species in southern Australia. J R Soc West Aust 47:25–32

    Google Scholar 

  • Grgurinovic CA (1997) Larger fungi of south Australia. The Botanic Gardens of Adelaide and State Herbarium and The Flora and Fauna of South Australia Handbooks Committee, Adelaide

  • Halling R (2001) Ectomycorrhizae: co-evolution, significance, and biogeography. Ann Mo Bot Gard 88:5–13

    Article  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DH (2001) Shiitake mushrooms and molecular clocks: historical biogeography of Lentinula. J Biogeogr 28:231–241

    Article  Google Scholar 

  • Høiland K, Holst-Jensen A (2000) Cortinarius phylogeny and possible taxonomic implications of ITS rDNA sequences. Mycologia 92:694–710

    Article  Google Scholar 

  • Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum, part I. Herbaria of the world, 8th edn. Regnum Vegetabile 120, New York Botanical Garden, New York (http://www.nybg.org/bsci/ih/)

  • Horak E (1979a) New species of Simocybe Karsten (Agaricales) from Papua New Guinea. Sydowia 32:123–130

    Google Scholar 

  • Horak E (1979b) Additional species of Simocybe (Agaricales) from Sabah and Australia. Sydowia 32:181–184

    Google Scholar 

  • Horak E (1980) Fungi agaricini novazelandiae X. SimocybeKarsten. N Z J Bot 18:189–196

    Google Scholar 

  • Horak E (1983) Mycogeography in the South Pacific region: Agaricales, Boletales. Aust J Bot 10:1–41 (Suppl)

    Google Scholar 

  • Hugall AF, Lee MSY (2004) Molecular claims of Gondwanan age for Australian agamid lizards are untenable. Mol Biol Evol 21:2102–2110

    Article  PubMed  CAS  Google Scholar 

  • Jülich W (1981) Higher taxa of Basidiomycetes. Bibl Mycol 85:1–485

    Google Scholar 

  • Knapp M, Stöckler K, Delsuc F, Sebastiani F, Lockhart P (2005) Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech). PLoS Biol 3:e14

    Article  PubMed  Google Scholar 

  • Kornerup A, Wanscher JH (1967) Methuen handbook of colour. Methuen, London

    Google Scholar 

  • Kropp BR, Matheny PB (2004) Basidiospore homoplasy and variation in the Inocybe chelanensis group in North America. Mycologia 96:295–309

    Article  Google Scholar 

  • Kuyper TW (1986) A revision of the genus Inocybe in Europe: I. subgenus Inosperma and the smooth-spored species of subgenus Inocybe. Persoonia 3(Suppl.):1–247

    Google Scholar 

  • Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998

    Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    PubMed  CAS  Google Scholar 

  • Madisson DR, Madisson WP (2000) MacClade 4: analysis of phylogeny and character evolution. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Marchant NG (1973) Species diversity in the south-western flora. J R Soc West Aust 56:23–30

    Google Scholar 

  • Martin F, Díez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal ITS sequences. New Phytol 153:345–357

    Article  CAS  Google Scholar 

  • Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol Phylogenet Evol 35:1–20

    Article  PubMed  CAS  Google Scholar 

  • Matheny PB, Ammirati JF (2003) Inocybe angustispora, I. taedophila, and Cortinarius aureifolius: an unusal inocyboid Cortinarius. Mycotaxon 88:401–407

    Google Scholar 

  • Matheny PB, Bougher NL (2005) A new violet species of Inocybe (Agaricales) from urban and rural landscapes in Western Australia. Australasian Mycologist 24:7–12

    Google Scholar 

  • Matheny PB, Watling R (2004) A new and unusual species of Inocybe (Inosperma clade) from tropical Africa. Mycotaxon 89:497–503

    Google Scholar 

  • Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89:688–698

    Article  CAS  Google Scholar 

  • Matheny PB, Aime MC, Henkel TW (2003) New species of Inocybe from Dicymbe forests of Guyana. Mycol Res 107:495–505

    Article  PubMed  Google Scholar 

  • McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust J Bot 49:271–300

    Article  Google Scholar 

  • Miller AN, Huhndorf SM (2004) Using phylogenetic species recognition to delimit species boundaries within Lasiosphaeria. Mycologia 96:1106–1127

    Article  CAS  Google Scholar 

  • Moncalvo J-M, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305

    Article  PubMed  CAS  Google Scholar 

  • Moncalvo J-M, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verduin W, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clemencon H, Miller OK (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400

    Article  PubMed  CAS  Google Scholar 

  • Mueller GM, Wu QX, Huang YQ, Guo SY, Aldana-Gomez R, Vilgalys R (2001) Assessing biogeographic relationships between North American and Chinese macrofungi. J Biogeogr 28:271–281

    Article  Google Scholar 

  • Munsell Soil Color Charts (1954) Munsell Color Company, Baltimore 18, Maryland, USA

  • Muse SV, Weir BS (1992) Testing for equality of evolutionary rates. Genetics 132:269–276

    PubMed  CAS  Google Scholar 

  • Natarajan K, Narayanan K, Ravindran C, Kumaresan V (2005) Biodiversity of agarics from Nilgiri Biosphere Reserve, Western Ghats, India. Curr Sci 88:1890–1893

    Google Scholar 

  • Nelson EC (1974) Disjunct plant distributions on the south-western Nullarbor Plain, Western Australia. J R Soc West Aust 57:105–117

    Google Scholar 

  • Peintner U, Bougher NL, Castellano MA, Moncalvo J-M, Moser MM, Trappe JM, Vilgalys R (2001) Multiple origins of sequestrate fungi related to Cortinarius (Cortinariaceae). Am J Bot 88:2168–2179

    Article  Google Scholar 

  • Pirozynski KA (1983) Pacific mycogeography: an appraisal. Aust J Bot 10:137–159 (Suppl)

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Printzen C, Lumbsch HT (2000) Molecular evidence for the diversification of extant lichens in the late Cretaceous and Tertiary. Mol Phylogenet Evol 17:379–387

    Article  PubMed  CAS  Google Scholar 

  • Raven PH (1979) Plate tectonics and southern hemisphere biogeography. In: Lauresen K, Holm-Nielsen LB (eds) Tropical botany. Academic, London, pp 3–24

    Google Scholar 

  • Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Mo Bot Gard 61:539–673

    Article  Google Scholar 

  • Ridgway R (1912) Color standards and color nomenclature. (Published by the author) Washington, DC, USA

  • Sanderson MJ (1998) Estimating rate and time in molecular phylogenies: beyond the molecular clock? In: Soltis DE, Soltis PE, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Norwell, Massachusetts, pp 242–264

    Google Scholar 

  • Sanderson MJ (2003) Molecular data from 27 proteins do not support a Precambrian origin of land plants. Am J Bot 90:954–956

    Article  CAS  Google Scholar 

  • Sanmartín I, Ronquist F (2004) Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol 53:216–243

    Article  PubMed  Google Scholar 

  • Singer R (1973) Neotropical species of Simocybe. Beih Nova Hedwig 44:485–517

    Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein, Germany

    Google Scholar 

  • Specht RL (1981) Evolution of the Australian flora: some generalization. In: Keast A (ed) Ecological biogeography of Australia. Junk, The Hague, Netherlands, pp 785–805

    Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Takamatsu S, Matsuda S (2004) Estimation of molecular clocks for ITS and 28S rDNA in Erysiphales. Mycoscience 45:340–344

    Article  CAS  Google Scholar 

  • Thomas KA, Peintner U, Moser MM, Manimohan P (2002) Anamika, a new mycorrhizal genus of Cortinariaceae from India and its phylogenetic position based on ITS and LSU sequences. Mycol Res 106:245–251

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tommerup IC, Bougher NL (1999) The role of ectomycorrhizal fungi in nutrient cycling in temperate Australian woodlands. In: Hobbs RJ, Yates CJ (eds) Temperate eucalypt woodlands in Australia: biology, conservation, management, and restoration. Beatty, Chipping Norton, pp 190–224

    Google Scholar 

  • Tremetserberger K, Weiss-Schneeweiss H, Stuessy T, Samuel R, Kadlec G, Ortiz MA, Talavera S (2005) Nuclear ribosomal DNA and karyotypes indicate a NW African origin of South American Hypochaeris (Asteraceae, Cichorieae). Mol Phylogenet Evol 35:102–116

    Article  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed  CAS  Google Scholar 

  • Vilgalys R, Sun BL (1994) Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc Natl Acad Sci U S A 91:4599–4603

    Article  PubMed  CAS  Google Scholar 

  • Villarreal M, Esteve-Raventós F, Heykoop M, Horak E (1998) Inocybe inexpectata, a new and unusual species of subgenus Mallocybe. Mycol Res 102:479–482

    Article  Google Scholar 

  • Vrinda KB, Pradeep CK, Matthew S, Abraham TK (1997) Inocybe purpureoflavida sp. nov. (Cortinariaceae) from Western Ghats of Kerala state, India. Mycotaxon 64:1–6

    Google Scholar 

  • Wang XQ, Tank DC, Sang T (2000) Phylogeny and divergence times in Pinaceae: evidence from three genomes. Mol Biol Evol 17:773–781

    PubMed  CAS  Google Scholar 

  • Wang Z, Binder M, Dai YC, Hibbett DS (2004) Phylogenetic relationships of Sparassis inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia 96:1015–1029

    Article  CAS  Google Scholar 

  • Warcup JH (1980) Ectomycorrhizal associations of Australian indigenous plants. New Phytol 85:531–535

    Article  Google Scholar 

  • Watling R (2001) An unusual Inocybe sp. from West Africa. Czech Mycol 52:329–334

    Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  • Winkworth RC, Wagstaff SJ, Glenn YD, Lockhart PJ (2002) Plant dispersal NEWS from New Zealand. Trends Ecol Evol 17:514–520

    Article  Google Scholar 

  • Wu QX, Mueller GM, Lutzoni FM, Huang YQ, Guo SH (2000) Phylogenetic and biogeographic relationships of eastern Asian and eastern North American disjunct Suillus species (fungi) as inferred from nuclear ribosomal RNA ITS sequences. Mol Phylogenet Evol 17:37–47

    Article  PubMed  CAS  Google Scholar 

  • Yates CJ, HobbS RJ, True DT (1999) The distribution and status of eucalypt woodlands in Western Australia In: Hobbs RJ, Yates CG (eds) Temperate eucalypt woodlands in Australia: biology, conservation, management and restoration. Beatty, Chipping Norton, pp 1–5

    Google Scholar 

Download references

Acknowledgements

We would like to thank Jim Trappe, Roy Watling, Orson Miller, Jr., and Graham Bell and the staff at CSIRO Forestry and Forest Products and the Western Australian Herbarium in Perth, Australia for access to collections used in this study. Many sources provided funding for the molecular work of this project: Ben Hall’s lab at the University of Washington, a Graduate Fellow Award from the Mycological Society of America, and grants from the Puget Sound Mycological Society and the Daniel E. Stuntz Memorial Foundation. We are also grateful to Dick Olmstead, Ben Hall, and Joe Ammirati for their critical reviews of earlier versions of this manuscript as well as to two anonymous reviewers whose comments helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Brandon Matheny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matheny, P.B., Bougher, N.L. The new genus Auritella from Africa and Australia (Inocybaceae, Agaricales): molecular systematics, taxonomy and historical biogeography. Mycol Progress 5, 2–17 (2006). https://doi.org/10.1007/s11557-005-0001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-005-0001-8

Keywords

Navigation