Skip to main content
Log in

Equivalent convolution strategy for the evolution computation in parametric active contour model

  • Research
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Parametric active contour model is an efficient approach for image segmentation. However, the high cost of evolution computation has restricted their potential applications to contour segmentation with long perimeter. Extensive algorithm debugging and analysis indicate that the inverse matrix calculation and the matrix multiplication are the two major reasons. In this paper, a novel simple and efficient algorithm for evolution computation is proposed. Motivated by the relationship between the eigenvalues and the entries in the circular Toeplitz matrix, each entry expression of inverse matrix is firstly derived through mathematical deduction, and then, the matrix multiplication is simplified into a more efficient convolution operation. Experimental results show that the proposed algorithm can significantly improve the computational speed by one to two orders of magnitude and is even more efficient for contour extraction with large perimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chang, J.X., Gao, X.J., Yang, Y.W., Wang, N.: Object-oriented building contour optimization methodology for image classification results via generalized gradient vector flow snake model. Remote Sens. 13(12), 2406 (2021)

    Article  Google Scholar 

  2. Mewada, H., Al-Asad, J.F., Patel, A., Chaudhari, J., Mahant, K., Vala, A.: A fast region-based active contour for non-rigid object tracking and its shape retrieval. Peer J. Comput. Sci. (2021)

  3. Codari, M., Scarabello, M., Secchi, F., Sforza, C., Baselli, G., Sardanelli, F.: Fully automated contour detection of the ascending aorta in cardiac 2d phase-contrast MRI. Magn. Reson. Imaging 47, 77–82 (2018)

    Article  Google Scholar 

  4. Farhangi, M.M., Frigui, H., Seow, A., Amini, A.A.: 3-d active contour segmentation based on sparse linear combination of training shapes (SCoTS). IEEE Trans. Med. Imaging 36(11), 2239–2249 (2017)

    Article  Google Scholar 

  5. Dong, B., Weng, G., Jin, R.: Active contour model driven by self organizing maps for image segmentation. Expert Syst. Appl. 177, 114948 (2021)

    Article  Google Scholar 

  6. Ding, K., Xiao, L., Weng, G.: Active contours driven by local pre-fitting energy for fast image segmentation. Pattern Recognit. Lett. 104, 29–36 (2018)

    Article  Google Scholar 

  7. Cohen, L.D., Cohen, I.: Finite element methods for active contour models and balloons for 2d and 3d images. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1131–1147 (1991)

    Article  Google Scholar 

  8. Zhu, G., Zhang, S., Zeng, Q., Wang, C.: Gradient vector flow active contours with prior directional information. Pattern Recognit. Lett. 31(9), 845–856 (2010)

    Article  Google Scholar 

  9. Tang, K.: Charged active contour model. In: IEEE International Conference on Systems, Man and Cybernetics, 2009, pp. 163–168. IEEE (2009)

  10. Ntalianis, K.S., Doulamis, N.D., Doulamis, A.D., Kollias, S.D.: Multiresolution gradient vector flow field: a fast implementation towards video object plane segmentation. In: IEEE International Conference on Multimedia and Expo(ICME), pp. 1–3. IEEE (2001)

  11. Han, X., Xu, C., Prince, J.L.: Fast numerical scheme for gradient vector flow computation using a multigrid method. IET Image Proc. 1(1), 48–55 (2007)

    Article  Google Scholar 

  12. He, Z., Kuester, F.: GPU-based active contour segmentation using gradient vector flow. In: Advances in Visual Computing, pp. 191–201. Springer (2006)

  13. Smistad, E., Elster, A.C., Lindseth, F.: Real-time gradient vector flow on GPUs using OpenCL. J. Real-Time Image Proc. 10(1), 67–74 (2015)

    Article  Google Scholar 

  14. Li, J., Zuo, W., Zhao, X., Zhang, D.: An augmented lagrangian method for fast gradient vector flow computation. In: IEEE International Conference on Image Processing (ICIP), pp. 1525–1528. IEEE (2011)

  15. Ren, D., Zuo, W., Zhao, X., Lin, Z., Zhang, D.: Fast gradient vector flow computation based on augmented Lagrangian method. Pattern Recognit. Lett. 34(2), 219–225 (2013)

    Article  Google Scholar 

  16. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  17. Wang, Y., Teoh, E.K.: Object contour extraction using adaptive b-snake model. J. Math. Imaging Vis. 24(3), 295–306 (2006)

    Article  MathSciNet  Google Scholar 

  18. Ray, N., Chanda, B., Das, J.: A fast and flexible multiresolution snake with a definite termination criterion. Pattern Recognit. 34(7), 1483–1490 (2001)

    Article  Google Scholar 

  19. Tang, K., Zhou, X.: Evolution algorithm of parametric active contour model based on Gaussian smoothing filter. Mach. Vis. Appl. 33(83), 1–9 (2022)

    Google Scholar 

  20. Hou, Z., Han, C.: Force field analysis snake: an improved parametric active contour model. Pattern Recognit. Lett. 26(5), 513–526 (2005)

    Article  Google Scholar 

  21. Bini, D.A., Dendievel, S., Latouche, G., Meini, B.: Computing the exponential of large block-triangular Block–Toeplitz matrices encountered in fluid queues. Linear Algebra Appl. 502, 387–419 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 52008340), Natural Science Foundation of Sichuan, China (2022NSFSC0443), and the High-end Talent Fund of the School of XiHua University(No. Z201130).

Author information

Authors and Affiliations

Authors

Contributions

Xiaojun Zhou gave funding support, Lin Lang involved in language proofreading, and Kelun Tang wrote the main manuscript text prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kelun Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \begin{aligned}\sum _{j=0}^{n-1} \kappa _{j}^{-1} &=\frac{2}{\sqrt{-\varDelta }} \textrm{Im}\left(\frac{\zeta }{1-\zeta ^{2}}\frac{\sum _{j=0}^{n-1}\zeta ^j+\sum _{j=0}^{n-1}\zeta ^{n-j}}{1-\zeta ^{n}}\right)\\ {}&=\frac{2}{\sqrt{-\varDelta }} \textrm{Im}\left(\frac{\zeta }{(1-\zeta )^{2}}\right) =\frac{2}{\sqrt{-\varDelta }} \textrm{Im}\left(\frac{1}{(1-\zeta )(\frac{1}{\zeta }-1)}\right)\\& =\frac{2}{\sqrt{-\varDelta }} \textrm{Im}\frac{1}{(1+\mu +\sqrt{\mu ^2-1})\left(\frac{1}{-\mu -\sqrt{\mu ^2-1}}-1\right)}\\& =-\frac{1}{\sqrt{-\varDelta }} \textrm{Im}\frac{1}{1+\mu } =-\frac{1}{\sqrt{-\varDelta }} \textrm{Im}\frac{1}{1+\frac{-(\alpha +4\beta )+\sqrt{\alpha ^2-4\beta }}{4\beta }}\\& =\frac{1}{\sqrt{-\varDelta }} \textrm{Im}(\alpha +\sqrt{-\varDelta }\text {i})=1 \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, K., Lang, L. & Zhou, X. Equivalent convolution strategy for the evolution computation in parametric active contour model. J Real-Time Image Proc 21, 71 (2024). https://doi.org/10.1007/s11554-024-01434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-024-01434-8

Keywords

Navigation