Skip to main content

Real-time embedded system for valve detection in water pipelines


Condition assessment is an essential process to comprehend the condition of the water pipelines and facilitate the maintenance as well as the renewal plans. Nowadays, varied in-pipe inspection platforms equipped with closed-circuit cameras are employed to capture the internal condition of the water pipelines. However, the automated platform often faces the challenge to negotiate with the installed valves during the inspection. To ensure continuous inspection, the platform needs identify the valve automatically and activate the control mechanism to pass through it. Thus, the valves need to be detected to facilitate the negotiation and ensure that the control mechanism can take an action in time. This paper focuses on real-time valve detection using Jetson TX2™ and a lightweight algorithm, namely YOLOv3-tiny. The performance of the implementation is compared with state-of-the-art real-time detection models. The experimental results demonstrate that YOLOv3-tiny has a high detection speed in frame per second for valve detection and outperforms the state-of-the-art real-time algorithms. Hence, the deployment YOLOv3-tiny into the embedded system will aid the automated platform to accomplish the uninterrupted inspection and enhance the capability for the condition assessment of the water pipelines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Abdel-Aleem, M., Chibelushi, C.C., Moniri, M.: Multisensor data fusion for the simultaneous location and condition assessment of underground water pipelines. In: 2011 International Conference on Networking, Sensing and Control, pp. 416–421. IEEE (2011)

  2. Arth, C., Bischof, H., Leistner, C.: Tricam-an embedded platform for remote traffic surveillance. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), pp. 125–125. IEEE (2006)

  3. Arth, C., Limberger, F., Bischof, H.: Real-time license plate recognition on an embedded dsp-platform. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  4. ASCE: 2017 infrastructure report card. In: American Society of Civil Engineers (2017)

  5. Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., Ouni, K.: Car detection using unmanned aerial vehicles: Comparison between faster r-cnn and yolov3. In: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), pp. 1–6. IEEE (2019)

  6. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, Prague, vol. 1, pp. 1–2 (2004)

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. IEEE (2005)

  8. De Vitis, G.A., Foglia, P., Prete, C.A.: A pre-processing technique to decrease inspection time in glass tube production lines. IET Image Process. 15(10), 2179–2191 (2021)

    Article  Google Scholar 

  9. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  10. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proceedings of the British Machine Vision Conference pp. 91.1–91.11 (2009)

  11. Farhadi, A., Redmon, J.: Yolov3: an incremental improvement. In: Computer Vision and Pattern Recognition, pp. 1804–2767 (2018)

  12. Franklin, D.: Nvidia jetson tx2 delivers twice the intelligence to the edge. NVIDIA Developer Blog (2017)

  13. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In: European Conference on Information Retrieval, pp. 345–359. Springer (2005)

  14. Han, Y., Oruklu, E.: Traffic sign recognition based on the nvidia jetson tx1 embedded system using convolutional neural networks. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 184–187. IEEE (2017)

  15. Hannuna, S., Camplani, M., Hall, J., Mirmehdi, M., Damen, D., Burghardt, T., Paiement, A., Tao, L.: Ds-kcf: a real-time tracker for rgb-d data. J. Real-Time Image Process. 16(5), 1439–1458 (2019)

    Article  Google Scholar 

  16. Hao, T., Rogers, C., Metje, N., Chapman, D., Muggleton, J., Foo, K., Wang, P., Pennock, S.R., Atkins, P., Swingler, S., et al.: Condition assessment of the buried utility service infrastructure. Tunn. Undergr. Space Technol. 28, 331–344 (2012)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  18. Huang, B., Sun, Y., Zeng, Q.: Real-time drogue detection and template tracking strategy for autonomous aerial refueling. J. Real-Time Image Process. 17(3), 437–446 (2020)

    Article  Google Scholar 

  19. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and\(<\) 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  20. Kaelbling, L.P.: Learning in Embedded Systems. MIT Press, Cambridge (1993)

    Book  Google Scholar 

  21. Khan, T.M., Bailey, D.G., Khan, M.A., Kong, Y.: Real-time iris segmentation and its implementation on FPGA. J. Real-Time Image Process. 17(5), 1089–1102 (2020)

    Article  Google Scholar 

  22. Kim, K.H., Hong, S., Roh, B., Cheon, Y., Park, M.: Pvanet: Deep but lightweight neural networks for real-time object detection. arXiv preprint arXiv:1608.08021 (2016)

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  24. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2169–2178. IEEE (2006)

  25. Li, G., Ren, P., Lyu, X., Zhang, H.: Real-time top-view people counting based on a kinect and nvidia jetson tk1 integrated platform. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 468–473. IEEE (2016)

  26. Lin, F., Schohl, G.A.: Cfd prediction and validation of butterfly valve hydrodynamic forces. In: Critical Transitions in water and environmental resources management Water and Environmental Resources Management, pp 1–8. World Water and Environmental Resources Congress 2004, June 27-July 1, 2004 Salt Lake City, Utah, United States

  27. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  28. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.: Ssd: Single shot multibox detector. In: European Conference on Computer Vision (ECCV) (2016)

  29. Liu, Z., Kleiner, Y.: State-of-the-art review of technologies for pipe structural health monitoring. IEEE Sens. J. 12(6), 1987–1992 (2012)

    Article  Google Scholar 

  30. Liu, Z., Ukida, H., Ramuhalli, P., Niel, K.: Integrated Imaging and Vision Techniques for Industrial Inspection. Springer, Berlin (2015)

    Book  Google Scholar 

  31. Mao, H., Yao, S., Tang, T., Li, B., Yao, J., Wang, Y.: Towards real-time object detection on embedded systems. IEEE Trans. Emerg. Top. Comput. 6(3), 417–431 (2016)

    Article  Google Scholar 

  32. Mhalla, A., Gazzah, S., Ben Amara, N.E., et al.: A faster r-cnn multi-object detector on a nvidia jetson tx1 embedded system. In: Proceedings of the 10th International Conference on Distributed Smart Camera, pp. 208–209. ACM (2016)

  33. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: European Conference on Computer Vision, pp. 143–156. Springer (2010)

  34. Piratla, K.R., Ariaratnam, S.T.: Criticality analysis of water distribution pipelines. J. Pipeline Syst. Eng. Pract. 2(3), 91–101 (2011)

    Article  Google Scholar 

  35. Rayhana, R., Jiao, Y., Bahrami, Z., Liu, Z., Wu, A., Kong, X.: Smart valve detection system for water distribution networks. In: 2021 22nd IEEE International Conference on Industrial Technology (ICIT), vol. 1, pp. 1176–1181. IEEE (2021)

  36. Rayhana, R., Jiao, Y., Bahrami, Z., Liu, Z.T., Wu, A., Kong, X.: Valve detection for autonomous water pipeline inspection platform. In: IEEE/ASME Trans. Mechatron, p 1 (2021).

  37. Rayhana, R., Jiao, Y., Liu, Z., Wu, A., Kong, X.: Water pipe valve detection by using deep neural networks. In: Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, vol. 11382, p. 1138205. International Society for Optics and Photonics (2020)

  38. Rayhana, R., Jiao, Y., Zaji, A., Liu, Z.: Automated vision systems for condition assessment of sewer and water pipelines. IEEE Trans. Autom. Sci. Eng. 18(4) 1861–1878 (2020).

  39. Rayhana, R., Xiao, G., Liu, Z.: Internet of things empowered smart greenhouse farming. IEEE J. Radio Freq. Identif. 4(3), 195–211 (2020)

    Article  Google Scholar 

  40. Rayhana, R., Xiao, G., Liu, Z.: Printed sensor technologies for monitoring applications in smart farming: a review. IEEE Trans. Instrum. Meas. 18, 1861–1878 (2021)

  41. Rayhana, R., Xiao, G., Liu, Z.: Rfid sensing technologies for smart agriculture. IEEE Instrum. Meas. Mag. 24(3), 50–60 (2021)

    Article  Google Scholar 

  42. Reddy, B., Kim, Y.H., Yun, S., Seo, C., Jang, J.: Real-time driver drowsiness detection for embedded system using model compression of deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 121–128 (2017)

  43. Redmon, J.: Darknet: open source neural networks in c. (2013–2016)

  44. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

  45. Roh, S.G., Choi, H.R.: Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans. Robot. 21(1), 1–17 (2005)

    Article  Google Scholar 

  46. Shafiee, M.J., Chywl, B., Li, F., Wong, A.: Fast yolo: a fast you only look once system for real-time embedded object detection in video. arXiv preprint arXiv:1709.05943 (2017)

  47. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision, vol. 3, pp. 1470–1470. IEEE Computer Society (2003)

  48. Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z.: Apple detection during different growth stages in orchards using the improved yolo-v3 model. Comput. Electron. Agric. 157, 417–426 (2019)

    Article  Google Scholar 

  49. Tijtgat, N., Van Ranst, W., Goedeme, T., Volckaert, B., De Turck, F.: Embedded real-time object detection for a uav warning system. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2110–2118 (2017)

  50. Tripathi, S., Dane, G., Kang, B., Bhaskaran, V., Nguyen, T.: Lcdet: low-complexity fully-convolutional neural networks for object detection in embedded systems. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 94–103 (2017)

  51. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005)

    Article  Google Scholar 

  52. Womg, A., Shafiee, M.J., Li, F., Chwyl, B.: Tiny ssd: A tiny single-shot detection deep convolutional neural network for real-time embedded object detection. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 95–101. IEEE (2018)

  53. Wu, M., Yue, H., Wang, J., Huang, Y., Liu, M., Jiang, Y., Ke, C., Zeng, C.: Object detection based on rgc mask r-cnn. IET Image Process. 14(8), 1502–1508 (2020)

    Article  Google Scholar 

  54. Zeng, W., Gong, J., Zecchin, A.C., Lambert, M.F., Simpson, A.R., Cazzolato, B.S.: Condition assessment of water pipelines using a modified layer-peeling method. J. Hydraul. Eng. 144(12), 04018076 (2018)

    Article  Google Scholar 

  55. Zhou, H., Peng, J., Liao, C., Li, J.: Application of deep learning model based on image definition in real-time digital image fusion. J. Real-Time Image Process. 17(3), 643–654 (2020)

    Article  Google Scholar 

Download references


Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for its support through the “Collaborative Research and Development Grants” (CRDPJ523761-18). The authors would also like to express the gratitude towards Pure Water-Xylem, Mississauga, Ontario, Canada for their kind support to this research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rayhana, R., Jiao, Y., Liu, Z. et al. Real-time embedded system for valve detection in water pipelines. J Real-Time Image Proc 19, 247–259 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Real time
  • Valve detection
  • Embedded device
  • Water pipeline
  • Condition assessment