Skip to main content

Realtime fire detection using CNN and search space navigation


Intelligent search techniques and an intelligent agent for smart search are useful in many application domains. We develop a state space navigational model for intelligent agents aimed at industrial surveillance from fire hazards. Our focus is on fire detection using the convolution neural network then proactively search the area which is more likely to have routes toward the target. This problem can be simulated into an optimization problem over a state space, which can be figure out effectively through a greedy algorithm. We also compare our approach with both uninformed and informed search algorithms. We evaluate our proposed system using various search algorithms for search and rescue agent. The analysis of the results obtained demonstrate the efficiency of the system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Ghallab, M., Nau, D.S., Traverso, P.: Automated planning: theory and practice, Morgan Kaufmann (2004). ISBN 1–55860–856–7

  2. 2.

    Alvarado, A.C., Vázquez Santacruz, E., Gamboa Zúñiga, M.: Construction of a basic intelligent agent. In: 2017 Intelligent Systems Conference (IntelliSys). London, UK, 7–8 Sept (2017)

  3. 3.

    Stanley, F.: Schmidt, “application of state-space methods to navigation problems.” Adv. Control Syst. 3, 293–340 (1966)

    Article  Google Scholar 

  4. 4.

    Turner, J.S.: New directions in communications. IEEE J. Sel. Areas Commun. 13(1), 11–23 (1995)

    Google Scholar 

  5. 5.

    Luotsinen, L.J., Gonzalez, A.J., Boloni, L., Orlando, C.F.: Collaborative UAV exploration of hostile environments. In: Proceedings for the Army Science Conference (24th). (2004)

  6. 6.

    Goodrich, M.A., Morse, B.S., Gerhardt, D., Cooper, J.L., Quigley, M., Adams, J.A., Humphrey, C.: Supporting wilderness search and rescue using a camera equipped mini UAV. J. Field Robot. 25(1–2), 89–110 (2008)

    Article  Google Scholar 

  7. 7.

    Bjarnason, R., Fern, A., Tadepalli, P.,: Lower bounding klondike solitairewith Monte-Carlo planning". In: Proceedings of the 19th international Conference on Automated Planning and Scheduling, pp 26–33 (2009)

  8. 8.

    Abelson, H., et al.: Intelligence in scientific computing. Commun. ACM 32(5), 546–562 (1989)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Yamauchi, B.: A frontier based approach for autonomous exploration. In: Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. Towards New Computational Principles for Robotics and Automation (1997)

  10. 10.

    Hamid, M. H. A., Adom, A., Abdul Rahim, N., Abdullah, A. H.: Autonomous mobile robot (AMRSBot) with GPS navigation and ultrasonic obstacle avoidance system. In: Conference Brunei International Conference in Engineering and Technology (2008)

  11. 11.

    Koenig, S., Sun, X.: Comparing Real-time and incremental heuristic search for real-time situated agents. J. Auton. Agents Multi-Agent Syst. 18(3), 313–341 (2009)

    Article  Google Scholar 

  12. 12.

    Sandier, B. Z.: ROBOTICS designing the mechanisms for automated machinery, 2nd edn. The Academic Press, Waltham, MA, p 1 (1998)

  13. 13.

    Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Joh, A. S., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayamm, M., NOBE, J., Shimada, S.: The RoboCup-Rescue project: a robotic approach to the disaster mitigation problem. In: Proceedings of the 2000 IEEE lntemational Conference on Robotics 8 Automation San Francisco, CA (2000)

  14. 14.

    Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. Trans. Robot. 21(3), 354–363 (2005)

    Article  Google Scholar 

  15. 15.

    Al Ahasan, M. A., Alamgir Hossain, S. K.,  Ullah Siddiquee, A., Rahman, M. M.: Obstacles invariant navigation of an autonomous robot based on GPS. In: 2012 15th International Conference on Computer and Information Technology (ICCIT) (2012)

  16. 16.

    Al-Faiz M. Z., Mahameda, G. E.: GPS-based navigated autonomous robot. Int. J. Emerg. Trends Eng. Res. 3(4)

  17. 17.

    Griffin, G.F.: The use of unmanned aerial vehicles for disaster management. GEOMATICA 68(4), 265–281 (2014)

    Article  Google Scholar 

  18. 18.

    Yoon, S., Fern, A., Givan, R., Kambhampati, S.: Probabilistic planning via determinization in hindsight. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol 2, pp 1010–1016. AAAI'08, AAAI Press (2008)

  19. 19.

    Mueller, M., Karasev, P., Kolesov, I., Tannenbaum, A.: Optical flow estimation for flame detection in videos. IEEE Trans. Image Process 22, 2786–2797 (2013)

    Article  Google Scholar 

  20. 20.

    Veness, C.: Calculate distance, bearing and more between Latitude/Longitude points.

  21. 21.

    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  22. 22.

    Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process 24, 5017–5032 (2015)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Jiang, B., Yang, J., Lv, Z., Tian, K., Meng, Q., Yan, Y.: Internet cross-media retrieval based on deep learning. J. Vis. Commun. Image Represent. 48, 356–366 (2017)

    Article  Google Scholar 

  24. 24.

    Yang, J., Jiang, B., Li, B., Tian, K., Lv, Z.: A fast image retrieval method designed for network big data IEEE Trans. Ind. Inform. 13(5), 2350–2359 (2017)

    Google Scholar 

  25. 25.

    Anwar, S., Hwang K., Sung W.: Fixed point optimization of deep convolutional neural networks for object recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, pp 1131–1135 (2015)

  26. 26.

    Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person reidentification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 152–159 (2014)

  27. 27.

    Luo, P., Tian, Y., Wang, X., Tang, X.: Switchable deep network for pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp 899–906 (2014)

  28. 28.

    Kantorov, V., Oquab, M., Cho, M., Laptev, I.: ContextLocNet: context-aware deep network models for weakly supervised localization. In: Proceedings of European Conference on Computer Vision, pp 350–365 (2016)

  29. 29.

    Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., et al.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108, 214–224 (2015)

    Article  Google Scholar 

  30. 30.

    Tao, C., Zhang, J., Wang, P.: Smoke detection based on deep convolutional neural networks. In: 2016 International conference on industrial informatics-computing technology, intelligent technology, industrial information integration (ICIICII) 1 pp. 150–153. IEEE (2016)

  31. 31.

    Saeed, F., Paul, A., Karthigaikumar, P., Nayyar, A.: Convolutional neural network based early fire detection. Multimedia Tools and Applications. 20, 1–7 (2019)

    Google Scholar 

  32. 32.

    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks”. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  33. 33.

    Foggia, P., Saggese, A., Vento, M.: Real-time fire detection for video-surveillance applications using a combination of experts based on colour, shape, and motion. IEEE Trans. Circuits Syst. Video Technol 25, 1545–1556 (2015)

    Article  Google Scholar 

  34. 34.

    Chino, D. Y., Avalhais, L. P., Rodrigues, J. F., Traina, A. J.: BoWFire: detection of fire in still images by integrating pixel colour and texture analysis. In: Proceedings of the 28th 2015 Conference on Graphics, Patterns and Images, SIBGRAPI, pp 95–102 (2015)

  35. 35.

    Saeed, F., Paul, A., Hong, W.H., Seo, H.: Machine learning based approach for multimedia surveillance during fire emergencies. Multimedia Tools and Applications. 6, 1–7 (2019)

    Google Scholar 

  36. 36.

    Derek.: “jgraph-search-gui”. Accessed Oct 2019

Download references


National Research Foundation of Korea. Grant Number: 2020R1A2C1012196.

Author information



Corresponding author

Correspondence to Hyuncheol Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahmatov, N., Paul, A., Saeed, F. et al. Realtime fire detection using CNN and search space navigation. J Real-Time Image Proc 18, 1331–1340 (2021).

Download citation


  • Artificial intelligence
  • Intelligent agent
  • Navigational maneuver
  • Neural networks
  • Search algorithm