FPGA-accelerated anisotropic diffusion filter based on SW/HW-codesign for medical images

Abstract

In medical imaging, denoising is very important for the analysis of images and the diagnosis and treatment of diseases. Currently, the image denoising methods based on anisotropic diffusion are efficient. However, the methods have been limited as regards the processing time. In recent computing systems, the FPGA-based acceleration has been highly competitive for GPU-based one due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SOC-FPGA of an anisotropic diffusion algorithm dedicated to medical applications. We choose an oriented speckle reducing anisotropic diffusion denoising filter, which provides robust performance but requires a significant computation on the embedded CPU since it is iterative. Moreover, we optimize the performance by modifying the original algorithm, automizing it by controlling the diffusion process at each iteration, and accelerating the processing operations by providing a hardware/software description. The evaluation is performed using different medical images. The efficiency and relevance of the proposed filter is demonstrated through segmentation. The design is validated on FPGA XC7Z020CLG484-1 with a frequency of 255 MHz and a PSNR of about 30 dB.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Thanki, R., Borra, S.: Medical Imaging and Its Security in Telemedicine Applications. Springer, New York (2019)

    Book  Google Scholar 

  2. 2.

    Manikandan, L.C.: Selvakumar, R.K., Anu, S., Nair, H., Sanal Kumar, K.P.: Hardware implementation of fast bilateral filter and canny edge detector using raspberry pi for telemedicine applications. J Ambient Intell Humaniz Comput 1–7 (2020)

  3. 3.

    Elhedda, W., Mehri, M., Mahjoub, M.A.: A comparative study of filtering approaches applied to color archival document images. arXiv preprintarXiv:1908.09007 (2019)

  4. 4.

    Ostojic, V.S., Starcevic, D.S., Petrovic, V.S.: Recursive radiography image denoising. In: 2017 25th Telecommunication Forum (TELFOR), pp 1–4 (2017)

  5. 5.

    Singh, P., Shree, R.: A new sar image despeckling using directional smoothing filter and method noise thresholding. Eng. Sci. Technol. Int. J. 21(4), 589–610 (2018)

    Google Scholar 

  6. 6.

    Fredj, A.H., Malek, J.: A fast and robust osrad filter for telemedicine applications. Int. J. Comput. Appl. 43(1), 70–79 (2021)

    Google Scholar 

  7. 7.

    HajiRassouliha, A., Taberner, A.J., Nash, M.P., Nielsen, P.M.F.: Suitability of recent hardware accelerators (dsps, fpgas, and gpus) for computer vision and image processing algorithms. Signal Process. Image Commun. 68, 101–119 (2018)

    Article  Google Scholar 

  8. 8.

    Kulkarni, A., Page, A., Attaran, N., Jafari, A., Malik, M., Homayoun, H., Mohsenin, T.: An energy-efficient programmable manycore accelerator for personalized biomedical applications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(1), 96–109 (2018)

    Article  Google Scholar 

  9. 9.

    Pauwels, K., Tomasi, M., Alonso, J.D., Ros, E., Van Hulle, M.M.: A comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image features. IEEE Trans. Comput. 61(7), 999–1012 (2012)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Krissian, K., Westin, C.-F., Kikinis, R., Vosburgh, K.G.: Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Yang, R., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filtering under structural constraints. IEEE Trans. Signal Process. 43(3), 591–604 (1995)

    Article  Google Scholar 

  12. 12.

    Pitas, I., Venetsanopoulos, A.: Nonlinear Digital Filters Principles and Applications. Kluwer Academic, Publishers, Hingham (1990)

    Book  Google Scholar 

  13. 13.

    Fan, L., Zhang, F., Fan, H., Zhang, C.: Brief review of image denoising techniques. Visual Comput. Ind. Biomed. Art 2(1), 7 (2019)

    Article  Google Scholar 

  14. 14.

    Ben Abdallah, M., Malek, J., Azar, A.T., Belmabrouk, H., Esclarín Monreal, J., Krissian, K.: Adaptive noise-reducing anisotropic diffusion filter. Neural Comput. Appl. 27(5), 1273–1300 (2016). (cited By 22)

    Article  Google Scholar 

  15. 15.

    Li, C.-Y., Chang, H.-H.: Cuda-based acceleration of collateral filtering in brain mr images. In: Eighth International Conference on Graphic and Image Processing (ICGIP 2016), vol. 10225, pp. 1022528. International Society for Optics and Photonics, (2017)

  16. 16.

    Fredj, A.H., Malek, J.: Gpu-based anisotropic diffusion algorithm for video image denoising. Microprocess. Microsyst. 53, 190–201 (2017)

    Article  Google Scholar 

  17. 17.

    Li, D.: 5g and intelligence medicine-how the next generation of wireless technology will reconstruct healthcare? Precis. Clin. Med. 2(4), 205–208 (2019)

    Article  Google Scholar 

  18. 18.

    Kumar, S., Jha, R.K.: An fpga-based design for a real-time image denoising using approximated fractional integrator. Multidimensional Systems and Signal Processing, pp 1–23 (2020)

  19. 19.

    Uthaya Kumar, C., Kamalraj, S.: Ambient intelligence architecture of mrpm context based 12-tap further desensitized half band fir filter for eeg signal. J. Ambient Intell. Humaniz. Comput. 11(4), 1459–1466 (2020)

    Article  Google Scholar 

  20. 20.

    Wang, C., Burnham-Fay, E.D., Ellis, J.D.: Real-time fpga-based kalman filter for constant and non-constant velocity periodic error correction. Precis. Eng. 48, 133–143 (2017)

    Article  Google Scholar 

  21. 21.

    Nair, R.R., David, E., Rajagopal, S.: A robust anisotropic diffusion filter with low arithmetic complexity for images. EURASIP J. Image Video Process. 2019(1), 48 (2019)

    Article  Google Scholar 

  22. 22.

    Weidle, G.F., Viel, F., de Melo, D.R., Zeferino, C.A.: A hardware accelerator for anisotropic diffusion filtering in fpga. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp 1–5. IEEE (2018)

  23. 23.

    Abdallah, M.B., Azar, A.T., Guedri, H., Malek, J., Belmabrouk, H.: Noise-estimation-based anisotropic diffusion approach for retinal blood vessel segmentation. Neural Comput. Appl. 29(8), 159–180 (2018)

    Article  Google Scholar 

  24. 24.

    Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–177 (1985)

    Article  Google Scholar 

  25. 25.

    Kumar, V., Asati, A., Gupta, A.: Low-latency median filter core for hardware implementation of 5\(\times\) 5 median filtering. IET Image Proc. 11(10), 927–934 (2017)

    Article  Google Scholar 

  26. 26.

    Bevara, V., Sanki, P.K.: A new fast and efficient 2-d median filter architecture. Sādhanā 45(1), 1–5 (2020)

    Article  Google Scholar 

  27. 27.

    Community-based Site, http://zedboard.org/. Zedboard.org. Accessed Dec 2016 (2016 )

  28. 28.

    Xilinx : Zynq-7000 All Programable SoC. http://www.xilinx.com/products/silicondevices/soc/zynq-7000.html (2016). Accessed Apr 2016

  29. 29.

    Dabhade, S.D., Rathna, G.N., Chaudhury, K.N.: A reconfigurable and scalable fpga architecture for bilateral filtering. IEEE Trans. Industr. Electron. 65(2), 1459–1469 (2017)

    Article  Google Scholar 

  30. 30.

    Altuncu, M.A., Guven, T., Becerikli, Y., Sahin, S.: Real-time system implementation for image processing with hardware/software co-design on the xilinx zynq platform. Int. J. Inf. Electron. Eng. 5(6), 473 (2015)

    Google Scholar 

  31. 31.

    Jang, S.-J., Hwang, Y.: Noise-aware and light-weight vlsi design of bilateral filter for robust and fast image denoising in mobile systems. Sensors 20(17), 4722 (2020)

    Article  Google Scholar 

  32. 32.

    Jelodari, P.T., Kordasiabi, M.P., Sheikhaei, S., Forouzandeh, B.: Fpga implementation of an adaptive window size image impulse noise suppression system. J. Real-Time Image Proc. 16(6), 2015–2026 (2019)

    Article  Google Scholar 

  33. 33.

    Abhari, P.S., Razaghian, F.: A novel median-based image impulse noise suppression system using spiking neurons on fpga. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 8(6), 1–10 (2020)

    Google Scholar 

  34. 34.

    Welstead, S.T.: Fractal and Wavelet Image Compression Techniques, vol. 40. Spie Press Book, Bellingham (1999). https://doi.org/10.1117/3.353798

    Book  Google Scholar 

  35. 35.

    Brain MRI Images (2006). http://overcode.yak.net/1

  36. 36.

    HosseinKhani, Z., Hajabdollahi, M., Karimi, N., Soroushmehr, R., Shirani, S., Najarian, K., Samavi, S.: Adaptive real-time removal of impulse noise in medical images. J. Med. Syst. 42(11), 1–9 (2018)

    Article  Google Scholar 

  37. 37.

    Hosseini, H., Hessar, F., Marvasti, F.: Real-time impulse noise suppression from images using an efficient weighted-average filtering. IEEE Signal Process. Lett. 22(8), 1050–1054 (2015)

    Article  Google Scholar 

  38. 38.

    Chen, P.-Y., Lien, C.-Y., Chuang, H.-M.: A low-cost vlsi implementation for efficient removal of impulse noise. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(3), 473–481 (2010)

    Article  Google Scholar 

  39. 39.

    DRIVE: Digital Retinal Images for Vessel Extraction (2021). http://www.isi.uu.nl/Research/Databases/DRIVE/

  40. 40.

    Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2017)

    Article  Google Scholar 

  41. 41.

    Iroshan, A.: Segmentation of blood vessels in retinal fundus images using maximum principal curvature. MATLAB Central File Exch. (2021). https://www.mathworks.com/matlabcentral/fileexchange/64884-segmentation-of-blood-vessels-in-retinal-fundus-images-using-maximum-principal-curvature. Accessed 29 Mar 2021

  42. 42.

    Yang, Y., Shao, F., Zhenqi, F., Randi, F.: Discriminative dictionary learning for retinal vessel segmentation using fusion of multiple features. SIViP 13(8), 1529–1537 (2019)

    Article  Google Scholar 

  43. 43.

    Shah, S.A.A., Shahzad, A., Khan, M.A., Cheng-Kai, L., Tang, T.B.: Unsupervised method for retinal vessel segmentation based on gabor wavelet and multiscale line detector. IEEE Access 7, 167221–167228 (2019)

    Article  Google Scholar 

  44. 44.

    Roy, S., Mitra, A., Roy, S., Setua, S.K.: Blood vessel segmentation of retinal image using clifford matched filter and clifford convolution. Multimed. Tools Appl. 78(24), 34839–34865 (2019)

    Article  Google Scholar 

  45. 45.

    Xian, M., Zhang, Y., Cheng, H.-D., Fei, X., Zhang, B., Ding, J.: Automatic breast ultrasound image segmentation: A survey. Pattern Recogn. 79, 340–355 (2018)

    Article  Google Scholar 

  46. 46.

    Sadek, I., Elawady, M., Stefanovski, V.: Automated breast lesion segmentation in ultrasound images. arXiv preprintarXiv:1609.08364 (2016)

  47. 47.

    Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  48. 48.

    Zhuang, Z., Li, N., Noel, A., Raj, J., Mahesh, V.G.V., Qiu, S.: An rdau-net model for lesion segmentation in breast ultrasound images. PLoS One 14(8), e0221535 (2019)

    Article  Google Scholar 

  49. 49.

    Fan, H., Meng, F., Liu, Y., Kong, F., Ma, J., Lv, Z.: A novel breast ultrasound image automated segmentation algorithm based on seeded region growing integrating gradual equipartition threshold. Multimed. Tools Appl. 78(19), 27915–27932 (2019)

    Article  Google Scholar 

  50. 50.

    Shan, J., Cheng, H.-D., Wang, Y.: A novel automatic seed point selection algorithm for breast ultrasound images. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amira Hadj Fredj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hadj Fredj, A., Malek, J. FPGA-accelerated anisotropic diffusion filter based on SW/HW-codesign for medical images. J Real-Time Image Proc (2021). https://doi.org/10.1007/s11554-021-01100-3

Download citation

Keywords

  • Denoising algorithms
  • Anisotropic diffusion filter
  • Segmentation
  • Medical application
  • SW/HW codesign
  • ZYNQ-7 ZC702