Machine vision for low-cost remote control of mosquitoes by power laser


In this paper, we present an innovative and effective method for remote monitoring of mosquitoes and their neutralization. We explain in detail how we leverage modern advances in neural networks to use a powerful laser to neutralize mosquitoes. The paper presented the experimental low-cost prototype for mosquito control, which uses a powerful laser to thermally neutralize the mosquitoes. The developed device is controlled by a single-board computer based on the neural network. The paper demonstrated experimental research for mosquito neutralization during which, to maximize approximation to natural conditions, simulation of various working conditions was conducted. The manuscript showed that a low-cost device can be used to kill mosquitoes with a powerful laser.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Fernandes, J., Moise, I., Maranto, G., Beier, J.: Revamping mosquito-borne disease control to tackle future threats. Trends Parasitol. 34(5), 359–368 (2018)

    Article  Google Scholar 

  2. 2.

    Fouet, C., Kamdem, C.: Integrated mosquito management: is precision control a luxury or necessity? Trends Parasitol. 35(1), 85–95 (2019)

    Article  Google Scholar 

  3. 3.

    Schwab, S., Stone, C., Fonseca, D., Fefferman, N.: The importance of being urgent: the impact of surveillance target and scale on mosquito-borne disease control. Epidemics 23, 55–63 (2018)

    Article  Google Scholar 

  4. 4.

    Vijayakumar, V., Malathi, D., Subramaniyaswamy, V., Saravanan, P., Logesh, R.: Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases. Comput. Hum. Behav. (2018).

    Article  Google Scholar 

  5. 5.

    Orozco, B., Windebank, T.: Mosquito detection with neural networks: the buzz of deep learning. (2017). arXiv:1705.05180v1 [stat.ML]

  6. 6.

    Alam, J., Guoqing, H., Chen, C.: Characteristics analysis and detection algorithm of mosquitoes. TelkomnikaIndones. J. Electr. Eng. 12(7), 5368–5378 (2014)

    Google Scholar 

  7. 7.

    Li, Y., Chan, H., Sinka, M.: Mosquito detection with low-cost smartphones: data acquisition for malaria research. (2017). arXiv:1711.06346v3 [stat.ML]

  8. 8.

    Fuchida, M., Pathmakumar, T., Mohan, R.: Vision-based perception and classification of mosquitoes using support vector machine. Appl. Sci. 7(1), 51 (2017).

    Article  Google Scholar 

  9. 9.

    Alam, J., Guoqing, H., Mojahidul, I.: Study of mosquito detection and position tracking algorithm. Automatic moth detection from trap images for pest. (2016). arXiv:1602.07383v1 [cs.CV]

  10. 10.

    Khalifa, A., Alouani, I., Mahjoub, M., Amara, N.: Pedestrian detection using a moving camera: a novel framework for foreground detection. Cogn. Syst. Res. 60, 77–96 (2020)

    Article  Google Scholar 

  11. 11.

    Sezer, B., Apaydin, H., Bilge, G., Boyaci, I.: Coffee arabica adulteration: detection of wheat, corn and chickpea. Food Chem. 264, 142–148 (2018)

    Article  Google Scholar 

  12. 12.

    Wang, L., Geng, X., Ma, X.: Ridesharing car detection by transfer learning. Artif. Intell. 273, 1–18 (2019)

    Article  Google Scholar 

  13. 13.

    Deng, Y., Liu, F., Chen, J., Su, G.: Mean shift tracker with chaotic artificial bee colony and space variant resolution. Optik 125(16), 4572–4577 (2014)

    Article  Google Scholar 

  14. 14.

    Mullen, E.R., Rutschman, P., Pegram, N., Patt, J.M., John, J., Adamczyk, J.J.: Laser system for identification, tracking, and control of flying insects. Opt. Express 24, 11828–11838 (2016)

    Article  Google Scholar 

  15. 15.

    Keller, M.D., Norton, B.J., Farrar, D.J., et al.: Optical tracking and laser-induced mortality of insects during flight. Sci. Rep. 10, 14795 (2020).

    Article  Google Scholar 

  16. 16.

    Floreano, D., Zufferey, J.: Insect vision: a few tricks to regulate flight altitude. Curr. Biol. 20(19), 847–849 (2010)

    Article  Google Scholar 

  17. 17.

    Nemec, D., Hrubos, M., Gregor, M., Bubenikova, E.: Visual localization and identification of vehicles inside a parking house. Proced. Eng. 192, 632–637 (2017)

    Article  Google Scholar 

  18. 18

    Bowen, M.: The sensory physiology of host seeking behavior in mosquitoes. Annu. Rev. Entomol. 36, 139–158 (1991)

    Article  Google Scholar 

  19. 19.

    Killeen, F., Smith, A.: Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behavior and mortality. Trans. R. Soc. Trop. Med. Hyg. 101, 867–880 (2007)

    Article  Google Scholar 

  20. 20.

    Service, M.: Effects of wind on the behavior and distribution of mosquitoes and blackies. Int. J. Biometeorol. 24, 347–353 (1980)

    Article  Google Scholar 

  21. 21.

    Cortez, R., Foppa, I.: a spatial model of mosquito host-seeking behavior. PLoSComput. Biol. (2012).

    Article  Google Scholar 

  22. 22.

    Banga, K., Kotwaliwale, N., Mohapatra, M.: Techniques for insect detection in stored food grains: an overview. Food Control 94, 167–176 (2018)

    Article  Google Scholar 

  23. 23.

    Liu, H., Chahl, J.: A multispectral machine vision system for invertebrate detection on green leaves. Comput. Electron. Agric. 150, 279–288 (2018)

    Article  Google Scholar 

  24. 24.

    Okamoto, H., Murakami, M., Kataoka, T., Shibata, Y.: Machine vision for detecting insects in hole of raspberry fruit. IFAC Proc. 46(4), 350–354 (2013)

    Article  Google Scholar 

  25. 25.

    Gibson, G., Warren, B., Ian, J.: Humming in tune: sex and species recognition by mosquitoes on the wing. J. Assoc. Res. Otolaryngol. 11(4), 527–540 (2010)

    Article  Google Scholar 

  26. 26.

    Raman, D., Gerhardt, R., Wilkerson, J.: Detecting insect flight sounds in the field: implications for acoustical counting of mosquitoes. Trans. ASABE 50(4), 1481–1485 (2007).

    Article  Google Scholar 

  27. 27.

    Fernandes, M., Cordeiro, W., Recamonde-Mendoza, M.: Detecting Aedes aegypti mosquitoes through audio classification with convolutional neural networks. Comput. Biol. Med. (2020).

    Article  Google Scholar 

  28. 28.

    Mukundarajan, H., Hol, F., Castillo, E., Newby, C., Prakash, M.: Using mobile phones as acoustic sensors for high-throughput mosquito surveillance. eLife 2017(6), e27854 (2017).

    Article  Google Scholar 

  29. 29.

    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. (2017). arXiv:1703.06870 [cs.CV]

  30. 30.

    He, K., Gkioxari, H., Dollar, P., Girshick, R.: Mask R-CNN. (2018). arXiv:1703.06870v3 [cs.CV]

Download references


Sergei Petrovskii (University of Leicester) is appreciated for his comments.

Author information



Corresponding author

Correspondence to Rakhmatulin Ildar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ildar, R. Machine vision for low-cost remote control of mosquitoes by power laser. J Real-Time Image Proc (2021).

Download citation


  • Mosquito control laser
  • Insect detection
  • Mosquito detection
  • Mosquito neutralization
  • Small object detection
  • Remote object detection