Skip to main content
Log in

Position-aware lightweight object detectors with depthwise separable convolutions

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Recently, significant improvements have been achieved for object detection algorithm by increasing the size of convolutional neural network (CNN) models, but the resulting increase of computational complexity poses an obstacle to practical applications. And some of the lightweight methods fail to consider the characteristics of object detection into and suffer a huge loss of accuracy. In this paper, we design a multi-scale feature lightweight network structure and specific convolution module for object detection based on depthwise separable convolution, which not only reduces the computational complexity but also improves the accuracy by using the specific position information in object detection. Furthermore, in order to improve the detection accuracy for small objects, we construct a multi-channel position-aware map and propose training based on knowledge distillation for object detection to train the lightweight model effectively. Last, we propose a training strategy based on a key-layer guiding structure to balance performance with training time. The experimental results show that on the COCO dataset that takes the state-of-the-art object detection algorithm, YOLOv3, as the baseline, our model size is compressed to 1/11 while accuracy drops by 7.4 mmAP, and the computational latency on the GPU and ARM platforms are reduced to 43.7% and 0.29%, respectively. Compared with the state-of-the-art lightweight object detection model, MNet V2 + SSDLite, the accuracy of our model increases by 3.5 mmAP while the inferencing time stays nearly the same. On the PASCAL VOC2007 dataset, the accuracy of our model increases by 5.2 mAP compared to the state-of-the-art lightweight algorithm based on knowledge distillation. Therefore, in terms of accuracy, parameter count, and real-time performance, our algorithm has better performance than lightweight algorithms based on knowledge distillation or depthwise separable convolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Szegedy, C., Alexander, T., Dumitru, E.: Deep neural networks for object detection. Neural Inf. Process. Syst. 1, 2553–2561 (2013)

    Google Scholar 

  2. Lecun, Y., Yoshua, B., Geoffrey, E.: Hinton.: deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Ren, S., He, K., Girshick, R.: Faster R-CNN: towards real-time object detection with region proposal networks. Neural Inf. Process. Syst. 1, 91–99 (2015)

    Google Scholar 

  4. Redmon, J., Farhadi,A.: YOLOv3: an incremental improvement. arXiv: Comput. Vis. Pattern Recognit (2018)

  5. Smolyanskiy, N., Kamenev,A., Smith. J.M.: Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness. Robotics (2017)

  6. Kim, Y.M., Park, E., Yoo, S.: Compression of deep convolutional neural networks for fast and low power mobile applications. Comput. Vis. Pattern Recognit. (2015)

  7. Guo, Y.: A survey on methods and theories of quantized neural networks. Learning (2018).

  8. Han, S., Mao, H., Dally, W, J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. Comput. Vis. Pattern Recognit. (2015)

  9. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Num. Math. 14(5), 403–420 (1970)

    Article  Google Scholar 

  10. Howard, A., Zhu, M., Chen, B.: MobileNets: efficient convolutional neural networks for mobile vision applications. Comput. Vis. Pattern Recognit. (2017)

  11. Zhang, X., Zhou, X., Lin, M.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. Comput. Vis. Pattern Recognit. (2017)

  12. Iandola, F., Han, S., Moskewicz, M.W.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. Comput. Vis. Pattern Recognit. (2017)

  13. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. Comput. Vis. Pattern Recognit. 1, 6517–6525 (2017)

    Google Scholar 

  14. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Mach. Learn. (2015).

  15. Romero, A., Ballas, N., Kahou, S.E.: FitNets: hints for thin deep nets. Learning (2014)

  16. Chen, G., Choi, W., Yu, X.: Learning efficient object detection models with knowledge distillation. Neural Inf. Process. Systems 1, 742–751 (2017)

    Google Scholar 

  17. Mehta, R., Ozturk, C.: Object detection at 200 frames per second. Comput. Vis. Pattern Recognit. (2018)

  18. Wang, T., Yuan, L., Zhang, X.: Distilling object detectors with fine-grained feature imitation. Comput. Vis. Pattern Recognit. 1, 4933–4942 (2019)

    Google Scholar 

  19. Chen, C., Liu, M., Tuzel, O., Xiao, J.: R-CNN for small object detection. Asian Conf. Comput. Vis. 1, 214–230 (2016)

    Google Scholar 

  20. Guo, Z., Zhang, W., Liang, Z., Shi, Y., Huang, Q.: Multi-scale object detection using feature fusion recalibration network. IEEE Access 8, 51664–51673 (2020). https://doi.org/10.1109/ACCESS.2020.2980737

    Article  Google Scholar 

  21. Huval, B., Coates, A., Ng, A, Y.: Deep learning for class-generic object detection. Comput. Vis. Pattern Recognit (2013)

  22. He, K., Gkioxari, G., Dollar, A.: Mask R-CNN. Int. Conf. Comput. Vis. 1, 2980–2988 (2017)

    Google Scholar 

  23. Girshick, R.: Fast R-CNN. Int. Conf. Comput. Vis. 1, 1440–1448 (2015)

    Google Scholar 

  24. Li, Z., Peng, C., Yu, G.: Light-head R-CNN: in defense of two-stage object detector. Comput. Vis. Pattern Recognit (2017).

  25. Sermanet, P., Eigen, D., Zhang, X.: OverFeat: integrated recognition, localization and detection using convolutional networks. Comput. Vis. Pattern Recognit. (2013).

  26. Redmon, J., Divvala, S.: You only look once: unified, real-time object detection. Comput. Vis. Pattern Recognit. 1, 779–788 (2016)

    Google Scholar 

  27. Liu, W., Anguelov, D., Erhan, D.: SSD: single shot multibox detector. Eur. Conf. Comput. Vis. 1, 21–37 (2016)

    Article  Google Scholar 

  28. Denil, M., Shakibi, B., Dinh, L.: Predicting parameters in deep learning. Neural Inf. Process. Syst. 1, 2148–2156 (2013)

    Google Scholar 

  29. Cheng, Y., Wang, D., Zhou, P.: A survey of model compression and acceleration for deep neural networks. Learning (2017)

  30. Srinivas, S., Subramanya, A., Babu, R.V.: Training sparse neural networks. Comput. Vis. Pattern Recognit. 1, 455–462 (2017)

    Google Scholar 

  31. Jia, H., Xiang, X., Fan, D.: DropPruning for model compression. Learning (2018)

  32. Li, H., Kadav, A., Durdanovic, I.: Pruning filters for efficient convnets. Comput. Vis. Pattern Recognit. (2016)

  33. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. Int. Conf. Comput. Vis. 1, 1398–1406 (2017)

    Google Scholar 

  34. Zhuang, Z., Tan, M., Zhuang, B.: Discrimination-aware channel pruning for deep neural networks. Neural Inf. Process. Syst. 1, 883–894 (2018)

    Google Scholar 

  35. He, Y., Lin, J., Liu, Z.: AMC: AutoML for model compression and acceleration on mobile devices. Eur. Conf. Comput. Vis. 1, 815–832 (2018)

    Google Scholar 

  36. Gupta, S., Agrawal, A., Gopalakrishnan, K.: Deep learning with limited numerical precision. Learning (2015)

  37. Xu, Y., Zhang, S., Qi, Y.: DNQ: dynamic network quantization. Learning (2018)

  38. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up Convolutional neural networks with low rank expansions. Comput. Vis. Pattern Recognit. (2014)

  39. Lin, M., Chen, Q., Yan, S.: Network in network. Neural Evolut. Comput. (2013)

  40. Ma, N., Zhang, X., Zheng, H.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. Eur. Conf. Comput. Vis. 1, 122–138 (2018)

    Google Scholar 

  41. Wong, A., Famouri, M., Shafiee, M.J.: YOLO nano: a highly compact you only look once convolutional neural network for object detection. Comput. Vis. Pattern Recognit. (2019)

  42. Sandler, M., Howard, A., Zhu, M.: MobileNetV2: inverted residuals and linear bottlenecks. Comput. Vis. Pattern Recognit. 4510–4520 (2018)

  43. Tan, M., Pang, R. Le, Q.V.: EfficientDet: Scalable and Efficient Object Detection[C]. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 10778–10787. doi: https://doi.org/10.1109/CVPR42600.2020.01079.

  44. Ba, L.J., Caruana, R.: Do deep nets really need to be deep. Learning (2013)

  45. Zeiler, M.D., Krishnan, D., Taylor, G.W.: Deconvolutional networks. Comput. Vis. Pattern Recognit (2010)

  46. Everingham, M., Eslami, S.M., Van Gool, L.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

  47. Lin, T., Maire, M., Belongie, S.: Microsoft COCO: common objects in context. european conference on computer vision, 2014: 740–755.

  48. Russakovsky, O., Deng, J., Su, H.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Zhang, S., Du, H. et al. Position-aware lightweight object detectors with depthwise separable convolutions. J Real-Time Image Proc 18, 857–871 (2021). https://doi.org/10.1007/s11554-020-01027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-01027-1

Keywords

Navigation