Real-time high-resolution omnidirectional imaging platform for drone detection and tracking

Abstract

Drones have become steadily affordable, which raises privacy and security concerns as well as interest in drone detection systems. On the other hand, drone detection is a challenging task due to small dimensions of drones, difficulty of long-distance detection, strict real-time constraints and necessity of wide angle coverage for drones. Although different radar and audio-assisted drone detection systems have been presented, they suffer from the cost, range, or interference problems. On the contrary, a long-range detection can be obtained by a vision-based system. Aiming that, we propose a real-time moving object detection and tracking system optimized for drone detection using 16 cameras with 20 MP resolution. The proposed system detects drones from short range and long range with 360\(^{\circ }\) surveillance coverage owing high-performance ultra-high-resolution (320 MP) video-processing capability. It is able to detect drones with 100 cm diameter from 700 m distance despite deceptive background. It is interference free, so multiple systems can properly operate in the vicinity without effecting each other. It integrates processing power of embedded systems with flexibility of software to generate a full platform for drone detection and tracking.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Liu, H., Wei, Z., Chen, Y., Pan, J., Lin, L., Ren, Y.: in 2017 IEEE Third International Conference on Multimedia Big Data (BigMM) (2017), pp. 402–406. https://doi.org/10.1109/BigMM.2017.57

  2. 2.

    Clarke, R., Moses, L.B.: The regulation of civilian drones’ impacts on public safety. Comput. Law Secur. Rev. 30(3), 263–285 (2014)

    Article  Google Scholar 

  3. 3.

    Clarke, R.: Understanding the drone epidemic. Comput. Law Secur. Rev. 30(3), 230–246 (2014)

    Article  Google Scholar 

  4. 4.

    Brooks, M.: Welcome to the personal drone revolution. New Sci. 216(2894), 42–45 (2012)

  5. 5.

    Stapleford, S.: Drone aircraft detector (2016)

  6. 6.

    Hearing, B., Franklin, J.: Drone detection and classification methods and apparatus (2016)

  7. 7.

    Andraši, P., Radišić, T., Muštra, M., Ivošević, J.: Transp. Res. Proc. 28, 183 (2017). https://doi.org/10.1016/j.trpro.2017.12.184

    Article  Google Scholar 

  8. 8.

    Chiang, D., Fishbein, W., Sheppard, D.: In 1993 Proceedings of IEEE International Carnahan Conference on Security Technology (1993), pp. 127–133. https://doi.org/10.1109/CCST.1993.386813

  9. 9.

    Aljaafreh, A.: A. Al-Fuqaha 4, (2010)

  10. 10.

    Busset, J., Perrodin, F., Wellig, P., Ott, B., Heutschi, K., Rühl, T., Nussbaumer, T.: Detection and tracking of drones using advanced acoustic cameras (2015)

  11. 11.

    Dimitropoulos, K., Grammalidis, N., Simitopoulos, D., Pavlidou, N., Strintzis, M.: in IEEE International Conference on Image Processing 2005, vol. 2 , pp. II–594–7. https://doi.org/10.1109/ICIP.2005.1530125 (2005)

  12. 12.

    Rozantsev, A., Lepetit, V., Fua, P.: IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 879 (2017). https://doi.org/10.1109/TPAMI.2016.2564408

  13. 13.

    Rozantsev, A., Lepetit, V., Fua, P.: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4128–4136 (2015). https://doi.org/10.1109/CVPR.2015.7299040

  14. 14.

    Huang, L., Tang, S., Zhang, Y., Lian, S., Lin, S.: Neurocomputing 118(Supplement C), 191 (2013). https://doi.org/10.1016/j.neucom.2013.03.003. http://www.sciencedirect.com/science/article/pii/S0925231213003226

  15. 15.

    Popovic, V., Afshari, H., Schmid, A., Leblebici, Y.: In 2013 IEEE International Conference on Industrial Technology (ICIT) (2013), pp. 1173–1178. https://doi.org/10.1109/ICIT.2013.6505839

  16. 16.

    Brown, M., Lowe, D.G.: Int. J. Comput. Vis. 74(1), 59 (2007). https://doi.org/10.1007/s11263-006-0002-3

  17. 17.

    Popovic, V., Leblebici, Y.: in 2015 IEEE International Conference on Image Processing (ICIP) , pp. 4411–4415 (2015). https://doi.org/10.1109/ICIP.2015.7351640

  18. 18.

    Mudjirahardjo, P., Suyono, H., Setyawan, R.A.: in 2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (2017), pp. 92–95. https://doi.org/10.1109/ICEEIE.2017.8328769

  19. 19.

    Park, J., Kim, D.H., Shin, Y.S., Lee, S.: in 2017 17th International Conference on Control, Automation and Systems (ICCAS) (2017), pp. 696–699. https://doi.org/10.23919/ICCAS.2017.8204318

  20. 20.

    Xu, Y., Zhou, Q., Gong, L., Zhu, M., Ding, X., Teng, R.K.F.: IEEE Trans. Circ. Syst. Video Technol. 24(6), 1061 (2014). https://doi.org/10.1109/TCSVT.2013.2290576

  21. 21.

    P.G.R. Inc. Spherical video system ladybug2 and ladybug3. http://www.ptgrey.com

  22. 22.

    Schreer, O., Feldmann, I., Weissig, C., Kauff, P., Schafer, R.: Proc IEEE 101(1), 99 (2013). https://doi.org/10.1109/JPROC.2012.2193850

  23. 23.

    Seyid, K., Popovic, V., Cogal, O., Akin, A., Afshari, H., Schmid, A., Leblebici, Y.: IEEE Trans. Circ. Syst. Video Technol. 25(2), 314 (2015). https://doi.org/10.1109/TCSVT.2014.2355713

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bilal Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demir, B., Ergunay, S., Nurlu, G. et al. Real-time high-resolution omnidirectional imaging platform for drone detection and tracking. J Real-Time Image Proc 17, 1625–1635 (2020). https://doi.org/10.1007/s11554-019-00921-7

Download citation

Keywords

  • Panorama
  • Background subtraction
  • High resolution
  • Moving object detection
  • Embedded system