Pruned improved eight-point approximate DCT for image encoding in visual sensor networks requiring only ten additions

Abstract

A low-complexity pruned eight-point discrete cosine transform (DCT) approximation for image compression in visual sensor networks is introduced. The proposed transform consists of using an approximate DCT in combination with pruning approach. The aim of the former is to reduce the computational complexity by not computing the DCT exactly, while the latter aims at computing only the more important low-frequency coefficients. An algorithm for the fast computation of the proposed transform is developed. Only ten additions are required for both forward and backward transformations. The proposed pruned DCT transform exhibits extremely low computational complexity while maintaining competitive image compression performance in comparison with the state-of-the-art methods. An efficient parallel-pipelined hardware architecture for the proposed pruned DCT is also designed. The resulting design is implemented on Xilinx Virtex-6 XC6VSX475T-2ff1156 FPGA technology and evaluated for hardware resource utilization, power consumption, and real-time performance. All the metrics we investigated showed clear advantages of the proposed pruned approximate transform over the state-of-the-art competitors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002). https://doi.org/10.1109/MCOM.2002.1024422

    Article  Google Scholar 

  2. 2.

    Rahimi, M., Baer, R., Iroezi, O.I., Garcia, J.C., Warrior, J., Estrin, D., Srivastava, M.: Cyclops: in situ image sensing and interpretation in wireless sensor networks. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys’05), USA, pp. 192–204 (2005). https://doi.org/10.1145/1098918.1098939

  3. 3.

    Soro, S., Heinzelman, W.: A survey of visual sensor networks. Adv. Multimed. 2009, 1–19 (2009). https://doi.org/10.1155/2009/640386

    Article  Google Scholar 

  4. 4.

    Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007). https://doi.org/10.1016/j.comnet.2006.10.002

    Article  Google Scholar 

  5. 5.

    Mammeri, A., Hadjou, B., Khoumsi, A.: A survey of image compression algorithms for visual sensor networks. ISRN Sens. Netw. 2012, 1–19 (2012). https://doi.org/10.5402/2012/760320

    Article  Google Scholar 

  6. 6.

    Lee, D., Kim, H., Rahimi, M., Estrin, D.: Energy-efficient image compression for resource constrained platforms. IEEE Trans. Image Process. 18(9), 2100–2113 (2009). https://doi.org/10.1109/TIP.2009.2022438

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Mammeri, A., Khoumsi, A., Ziou, D., Hadjou, B.: Energy-aware JPEG for visual sensor networks. In: Maghrebian Conference on Information Technologies (MCSEAI’08), Oran, Algeria (2008)

  8. 8.

    Taylor, C.N., Panigrahi, D., Dey, S.: Design of an adaptive architecture for energy efficient wireless image communication. Lect. Notes Comput. Sci. 2268, 260–273 (2002). https://doi.org/10.1007/3-540-45874-3_15

    Article  MATH  Google Scholar 

  9. 9.

    Cintra, R.J., Bayer, F.M.: A DCT approximation for image compression. IEEE Signal Process. Lett. 18(10), 579–582 (2011). https://doi.org/10.1109/LSP.2011.2163394

    Article  Google Scholar 

  10. 10.

    Bayer, F.M., Cintra, R.J.: DCT-like transform for image compression requires 14 additions only. Electron. Lett. 48(15), 919–921 (2012). https://doi.org/10.1049/el.2012.1148

    Article  Google Scholar 

  11. 11.

    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Binary discrete cosine and hartley transforms. IEEE Trans. Circuits Syst. 60(4), 989–1002 (2013). https://doi.org/10.1109/TCSI.2012.2224751

    MathSciNet  Article  Google Scholar 

  12. 12.

    Potluri, U.S., Madanayake, A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Edirisuriya, A.: Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Trans. Circuits Syst. 61(6), 1727–1740 (2014). https://doi.org/10.1109/TCSI.2013.2295022

    Article  Google Scholar 

  13. 13.

    Tablada, C.J., da Silveira, T.L.T., Cintra, R.J., Bayer, F.M.: DCT approximations based on Chen’s factorization. Signal Process. Image Commun. 58, 14–23 (2017). https://doi.org/10.1016/j.image.2017.06.014

    Article  Google Scholar 

  14. 14.

    Oliveira, R.S., Cintra, R.J., Bayer, F.M., da Silveira, T.L.T., Madanayake, A., Leite, A.: Low-complexity 8-point DCT approximation based on angle similarity for image and video coding. Multidimens. Syst. Signal Process. (2018). https://doi.org/10.1007/s11045-018-0601-5

    Article  MATH  Google Scholar 

  15. 15.

    Jridi, M., Meher, P.K.: Scalable approximate DCT architectures for efficient HEVC-compliant video coding. IEEE Trans. Circuits Syst. Video 27(8), 1815–1825 (2017). https://doi.org/10.1109/TCSVT.2016.2556578

    Article  Google Scholar 

  16. 16.

    Makkaoui, L., Lecuire, V., Moureaux, J.-M.: Fast zonal DCT-based image compression for wireless camera sensor networks. In: Proceedings of the IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA’10), Paris, France, pp. 126–129 (2010)

  17. 17.

    Lecuire, V., Makkaoui, L., Moureaux, J.-M.: Fast zonal DCT for energy conservation in wireless image sensor networks. Electron. Lett. 48, 125–127 (2012). https://doi.org/10.1049/el.2011.2392

    Article  Google Scholar 

  18. 18.

    Kouadria, N., Doghmane, N., Messadeg, D., Harize, S.: Low complexity DCT for image compression in wireless visual sensor networks. Electron. Lett. 49(24), 1531–1532 (2013). https://doi.org/10.1049/el.2013.2781

    Article  Google Scholar 

  19. 19.

    Mechouek, K., Kouadria, N., Doghmane, N., Kaddeche, N.: Low complexity DCT approximation for image compression in wireless image sensor networks. J. Circuits Syst. Comput. 25(8), 1650088 (2016). https://doi.org/10.1142/S0218126616500882

    Article  Google Scholar 

  20. 20.

    Araar, C., Ghanemi, S., Benmohammed M., Bourennane, E.: Low complexity image compression using pruned 8-point DCT approximation in wireless visual sensor networks. In: 2017 International Conference on Mathematics and Information Technology (ICMIT), Adrar, Algeria, pp. 279–285 (2017). https://doi.org/10.1109/mathit.2017.8259730

  21. 21.

    Coutinho, V.A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: A multiplierless pruned DCT-like transformation for image and video compression that requires ten additions only. J. Real-Time Image Process. 12(2), 247–255 (2015). https://doi.org/10.1007/s11554-015-0492-8

    Article  Google Scholar 

  22. 22.

    Britanak, V., Yip, P., Rao, K.R.: Discrete cosine and sine transforms. Academic Press, San Diego (2007)

    Google Scholar 

  23. 23.

    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Low-complexity 8 × 8 transform for image compression. Electron. Lett. 44, 1249–1250 (2008). https://doi.org/10.1049/el:20082239

    Article  Google Scholar 

  24. 24.

    The USC-SIPI image database. University of Southern California, Signal and Image Processing Institute. http://sipi.usc.edu/database/. Accessed 2018

  25. 25.

    Rao, K.R., Yip, P.C.: The Transform and Data Compression Handbook. CRC Press LLC, Boca Raton (2001)

    Google Scholar 

  26. 26.

    Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  27. 27.

    Loeffler, C., Ligtenberg, A., Moschytz, G.S.: Practical fast 1-D DCT algorithms with 11 multiplications. In: International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, pp. 988–991 (1989). https://doi.org/10.1109/icassp.1989.266596

  28. 28.

    Hosny, K.M.: Fast computation of accurate zernike moments. J. Real-Time Image Process. 3(1), 97–107 (2008). https://doi.org/10.1007/s11554-007-0058-5

    MathSciNet  Article  Google Scholar 

  29. 29.

    ISO/IEC 10918-1/ITU-T Recommendation T.81, Digital compression and coding of continuous-tone still images. http://www.jpeg.org/jpeg/. Accessed 2018

  30. 30.

    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  31. 31.

    Phamila, A.V.Y., Amutha, R.: Energy-efficient low bit rate image compression in wavelet domain for wireless image sensor networks. Electron. Lett. 51(11), 824–826 (2015). https://doi.org/10.1049/el.2015.0411

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chaouki Araar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 49 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Araar, C., Ghanemi, S., Benmohammed, M. et al. Pruned improved eight-point approximate DCT for image encoding in visual sensor networks requiring only ten additions. J Real-Time Image Proc 17, 1597–1608 (2020). https://doi.org/10.1007/s11554-019-00918-2

Download citation

Keywords

  • VSNs
  • Image compression
  • Pruning approach
  • FPGA
  • Low power consumption