Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)
MathSciNet
MATH
Google Scholar
Bermejo, S., Cabestany, J.: The effect of finite sample size on online K-means. Neurocomputing 48(1–4), 511–539 (2002)
MATH
Google Scholar
Bottou, L.: Online learning and stochastic approximations. In: Saad, D. (ed.) On-Line Learning in Neural Networks, pp. 9–42. Cambridge University Press, Cambridge (1998)
MATH
Google Scholar
Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14(1), 88–100 (1988)
MathSciNet
MATH
Google Scholar
Braudaway, G.W.: Procedure for optimum choice of a small number of colors from a large color palette for color imaging. In: Proceedings of the Electronic Imaging Conference, pp. 71–75 (1987)
Brun, L., Mokhtari, M.: Two high speed color quantization algorithms. In: Proceedings of the 1st International Conference on Color in Graphics and Image Processing, pp. 116–121 (2000)
Brun, L., Trémeau, A.: Color quantization. In: Sharma, G. (ed.) Digital Color Imaging Handbook, pp. 589–638. CRC Press, Boca Raton (2002)
Google Scholar
Celebi, M.E., Wen, Q., Hwang, S.: An effective real-time color quantization method based on divisive hierarchical clustering. J. Real-Time Image Proc. 10(2), 329–344 (2015)
Google Scholar
Celebi, M.E.: Fast color quantization using weighted sort-means clustering. J. Opt. Soc. Am. A 26(11), 2434–2443 (2009)
Google Scholar
Celebi, M.E.: Improving the performance of K-means for color quantization. Image Vis. Comput. 29(4), 260–271 (2011)
Google Scholar
Celebi, M.E., Wen, Q., Schaefer, G., Zhou, H.: Batch neural gas with deterministic initialization for color quantization. In: Proceedings of the International Conference on Computer Vision and Graphics, pp. 48–54 (2012)
Celebi, M.E., Hwang, S., Wen, Q.: Color quantization using the adaptive distributing units algorithm. Imaging Sci. J. 62(2), 80–91 (2014)
Google Scholar
Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the K-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)
Google Scholar
Celebi, M.E. (ed.): Partitional Clustering Algorithms. Springer, Berlin (2015)
MATH
Google Scholar
Cheng, S., Yang, C.: Fast and novel technique for color quantization using reduction of color space dimensionality. Pattern Recogn. Lett. 22(8), 845–856 (2001)
MATH
Google Scholar
Chung, K.L., Huang, Y.H., Wang, J.P., Cheng, M.S.: Speedup of color palette indexing in self-organization of Kohonen feature map. Expert Syst. Appl. 39(3), 2427–2432 (2012)
Google Scholar
Dekker, A.: Kohonen neural networks for optimal colour quantization. Network Comput. Neural Syst. 5(3), 351–367 (1994)
MathSciNet
MATH
Google Scholar
Darken, C., Moody, J.: Fast adaptive K-means clustering: some empirical results. In: Proceedings of the 1990 International Joint Conference on Neural Networks, vol. 2, pp. 233–238 (1990)
Du, Q., Wong, T.W.: Numerical studies of MacQueen’s K-means algorithm for computing the centroidal Voronoi tessellations. Comput. Math. Appl. 44(3–4), 511–523 (2002)
MathSciNet
MATH
Google Scholar
El-Said, S.A.: Image quantization using improved artificial fish swarm algorithm. Soft. Comput. 19(9), 2667–2679 (2015)
Google Scholar
Frackiewicz, M., Palus, H.: KM and KHM clustering techniques for colour image quantisation. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds.) Computational Vision and Medical Image Processing: Recent Trends. Springer, pp. 161–174 (2011)
Gervautz, M., Purgathofer, W.: A simple method for color quantization: octree quantization. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) New Trends in Computer Graphics. Springer, pp. 219–231 (1988)
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38(2–3), 293–306 (1985)
MathSciNet
MATH
Google Scholar
Gonzalez, A.I., Grana, M., Albizuri, F.X., D’Anjou, A., Torrealdea, F.J.: A near real-time evolution-based adaptation strategy for dynamic color quantization of image sequences. Inf. Sci. 122(2–4), 161–183 (2000)
MATH
Google Scholar
Grossberg, S.: Competitive learning: from interactive activation to adaptive resonance. Cogn. Sci. 11(1), 23–63 (1987)
Google Scholar
Hathaway, R.J., Bezdek, J.C., Huband, J.M.: Maximin initialization for cluster analysis. In: Proceedings of the 11th Iberoamerican Congress in Pattern Recognition, pp. 14–26 (2006)
Heckbert, P.: Color image quantization for frame buffer display. ACM SIGGRAPH Comput. Graph. 16(3), 297–307 (1982)
Google Scholar
Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discret. Appl. Math. 1(3), 209–215 (1979)
MathSciNet
MATH
Google Scholar
Hu, Y.C., Lee, M.G.: K-means based color palette design scheme with the use of stable flags. J. Electron. Imaging 16(3), 033003 (2007)
Google Scholar
Hu, Y.C., Su, B.H.: Accelerated K-means clustering algorithm for colour image quantization. Imaging Sci. J. 56(1), 29–40 (2008)
MathSciNet
Google Scholar
Hu, Z., Su, Q., Xia, X.: Multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution. Comput. Intell. Neurosci. 2016, 2450431 (2016)
Google Scholar
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)
Google Scholar
Joy, G., Xiang, Z.: Center-cut for color image quantization. Vis. Comput. 10(1), 62–66 (1993)
Google Scholar
Lemire, D.: Fast random integer generation in an interval. ACM Trans. Model. Comput. Simul. 29(1), 3:1–3:12 (2019)
MathSciNet
Google Scholar
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–136 (1982)
MathSciNet
MATH
Google Scholar
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)
MATH
Google Scholar
Müllner, D.: Fastcluster: fast hierarchical, agglomerative clustering routines for R and Python. J. Stat. Softw. 53(9), 1–18 (2013)
Google Scholar
Omran, M.G.H., Engelbrecht, A.P., Salman, A.: Particle swarm optimization for pattern recognition and image processing. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Swarm Intelligence in Data Mining, pp. 125–151. Springer, Berlin (2006)
Google Scholar
Orchard, M., Bouman, C.: Color quantization of images. IEEE Trans. Signal Process. 39(12), 2677–2690 (1991)
Google Scholar
Ozturk, C., Hancer, E., Karaboga, D.: Color image quantization: a short review and an application with artificial bee colony algorithm. Informatica 25(3), 485–503 (2014)
Google Scholar
Nolle, L., Schaefer, G.: Colour map design through optimization. Eng. Optim. 39(3), 327–343 (2007)
Google Scholar
Perez-Delgado, M.L.: Colour quantization with ant-tree. Appl. Soft Comput. 36, 656–669 (2015)
Google Scholar
Perez-Delgado, M.L., Gallego, J.A.R.: A two-stage method to improve the quality of quantized images. J. Real-Time Image Process. (2019) (in press)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 3rd edn. Cambridge University Press, Cambridge (2007)
MATH
Google Scholar
Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. Cogn. Sci. 9(1), 75–112 (1985)
Google Scholar
Schaefer, G., Zhou, H.: Fuzzy clustering for colour reduction in images. Telecommun. Syst. 40(1–2), 17–25 (2009)
Google Scholar
Schaefer, G., Nolle, L.: Color quantization. In: Qing, A. (ed.) Differential Evolution: Fundamentals and Applications in Electrical Engineering, pp. 399–405. Wiley, New York (2009)
Google Scholar
Schaefer, G., Nolle, L.: A hybrid color quantization algorithm incorporating a human visual perception model. Comput. Intell. 31(4), 684–698 (2015)
MathSciNet
Google Scholar
Schaefer, G., Hu, Q., Huiyu, Z., Peters, J.F., Hassanien, A.E.: Rough C-means and fuzzy rough C-means for colour quantisation. Fundam. Inf. Emerg. Comput. 119(1), 113–120 (2012)
MathSciNet
Google Scholar
Scheunders, P.: A genetic C-means clustering algorithm applied to color image quantization. Pattern Recogn. 30(6), 859–866 (1997)
Google Scholar
Scitovski, R., Sabo, K.: Analysis of the K-means algorithm in the case of data points occurring on the border of two or more clusters. Knowl.-Based Syst. 57, 1–7 (2014)
Google Scholar
Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley, Oxford (2003)
MATH
Google Scholar
Su, Q., Hu, Z.: Color image quantization algorithm based on self-adaptive differential evolution. Comput. Intell. Neurosci. 2013, 231916 (2013)
Google Scholar
Uchiyama, T., Arbib, M.: An algorithm for competitive learning in clustering problems. Pattern Recogn. 27(10), 1415–1421 (1994)
Google Scholar
Ueda, Y., Koga, T., Suetake, N., Uchino, E.: Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation. Opt. Rev. 24(6), 741–756 (2017)
Google Scholar
Valenzuela, G., Celebi, M.E., Schaefer, G.: Color quantization using coreset sampling. In: Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2096–2101 (2018)
Velho, L., Gomez, J., Sobreiro, M.V.R.: Color image quantization by pairwise clustering. In: Proceedings of the 10th Brazilian Symposium on Computer Graphics and Image Processing, pp. 203–210 (1997)
Wan, S.J., Prusinkiewicz, P., Wong, S.K.M.: Variance-based color image quantization for frame buffer display. Color Res. Appl. 15, 52–58 (1990)
Google Scholar
Wen, Q., Celebi, M.E.: Hard versus fuzzy C-means clustering for color quantization. EURASIP J. Adv. Signal Process. 2011, 118–129 (2011)
Google Scholar
Wu, X.: Efficient statistical computations for optimal color quantization. In: Arvo, J. (ed.) Graphics Gems, vol. II, pp. 126–133. Academic Press, London (1991)
Google Scholar
Wu, K.L., Yang, M.S.: Alternative learning vector quantization. Pattern Recogn. 39(3), 351–362 (2006)
MATH
Google Scholar
Xiang, Z.: Color image quantization by minimizing the maximum intercluster distance. ACM Trans. Graph. 16(3), 260–276 (1997)
Google Scholar
Xiao, Y., Leung, C.S., Lam, P.M., Ho, T.Y.: Self-organizing map-based color palette for high-dynamic range texture compression. Neural Comput. Appl. 21(4), 639–647 (2012)
Google Scholar
Yair, E., Zeger, K., Gersho, A.: Competitive learning and soft competition for vector quantizer design. IEEE Trans. Signal Process. 40(2), 294–309 (1992)
Google Scholar
Yang, C.Y., Lin, J.C.: RWM-cut for color image quantization. Comput. Graph. 20(4), 577–588 (1996)
Google Scholar